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Latest Large-Scale LLMs

• Doubao-Seed-1.6

• DeepSeek v3.1

• GPT-OSS

• Gemini 2.5 Pro

All adopt the Mixture-of-Experts (MoE) architecture!



Mixture-of-Experts (MoE)

• The mainstream architecture of large-scale LLMs
• Each token is only sent to the top-k experts
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Autoregressive Generation of LLM
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Characteristics of Two Phases in LLM inference

Compute-intensive Memory-intensive
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How to Achieve Efficient MoE Inference

• PD Disaggregation: Execute the prefill and decoding phases on 
different nodes

• Expert parallelism: Partition the parameters to different nodes at the 
granularity of experts
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Issues in the Decoding Phase of MoE Inference

• Low GPU utilization
• Attention is memory-intensive
• Sparsity results in a small batch size for each expert and low 

computational intensity



Solution: Disaggregate Attention and FFN

• Independent scaling: Aggregating multiple attention requests 
can improve the computational efficiency of FFN

• Heterogeneous deployment: Adopt more cost-effective 
hardware for each module
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Challenge 1: Idle Resource Due to Dependencies

• Sequential computation of a batch will result in only a portion of 
the resources being utilized at the same time
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Challenge 2: Requirement of High-Performance M2N 
Communication
• Problems with existing communication libraries (NCCL):

• Additional overhead such as data copy and group operation
• High degree of instability

One sender sends 128K bytes of data to N receivers



MegaScale-Infer

• Disaggregated expert parallelism
• Ping-pong pipeline parallel
• High-performance M2N communication library



Disaggregated Expert Parallelism

• Multiple attention nodes process different requests in a replicated 
manner

• Expert nodes adopt expert parallelism, and each expert receives 
tokens from multiple attention nodes



Ping-Pong Pipeline Parallel
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• Make full use of resources and overlap communication with 
computation through multiple micro-batches



Deployment Plan Search

• Objective: Maximize the throughput per unit cost while meeting 
the SLOs

• Constraints:
• 𝑻𝒂 ≈ 𝑻𝒆
• 𝑻𝒄 < 𝑻𝒂
• Sufficient number of micro-batches
• Enough memory capacity
• ……



Heterogeneous Deployment

• Higher bandwidth per unit cost (H20) for attention
• Higher computational capability per unit cost (L40S) for FFN



High-Performance M2N Communication Library

• Minimize overhead such as data copies and group operations
• CPU manages send/receive operations on the control plane
• Data is directly transferred between the GPU and NIC



Evaluation

• Testbed
• Cluster 1: NVIDIA 80GB Ampere GPUs
• Cluster 2: NVIDIA H20 and L40S GPUs

• Models

• Baseline
• vLLM
• TensorRT-LLM



Homogeneous Cluster

• Improves decoding throughput per GPU by up to 7.11x and 
1.90x compared to vLLM and TensorRT-LLM



Heterogeneous Cluster

• Improves decoding throughput per GPU by up to 3.24x and 
1.86x compared to vLLM and TensorRT-LLM



Performance of M2N Communication

• Both median latency and tail latency are significantly better than 
NCCL, fully utilizing the network bandwidth



Influence of Deployment Plan

• Number of micro-batch • Number of attention node



Deployment Experience

• Expert balance
• Severe load imbalance among experts
• During the decoding phase, the load on each expert is relatively stable
• During the prefill phase, the load on each expert varies significantly

• Attention balance
• Differences in sequence length can cause variations in the computation 

time of different attention nodes
• Batch composition strategy based on estimated execution time



Conclusion

• MegaScale-Infer: Disaggregating attention and FFN for 
efficient MoE inference at scale

• Optimal deployment plan with ping-pong pipeline parallelism
• High-performance M2N communication
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