

MegaScale-Infer: Efficient Mixture-of-Experts Serving with Disaggregated Expert Parallelism

Ruidong Zhu*, Ziheng Jiang*, Chao Jin*, Peng Wu, Cesar A. Stuardo, Dongyang Wang, Xinlei Zhang, Huaping Zhou, Haoran Wei, Yang Cheng, Jianzhe Xiao, Xinyi Zhang, Lingjun Liu, Haibin Lin, Li-Wen Chang, Jianxi Ye, Xiao Yu, Xuanzhe Liu, Xin Jin, Xin Liu

Latest Large-Scale LLMs

Doubao-Seed-1.6

DeepSeek v3.1

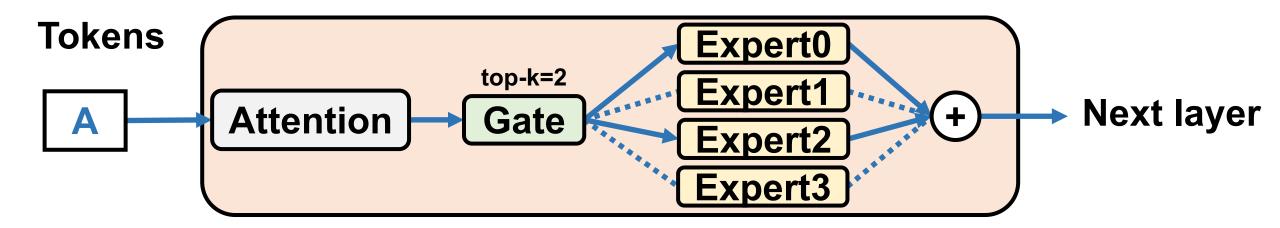
• GPT-OSS

• Gemini 2.5 Pro

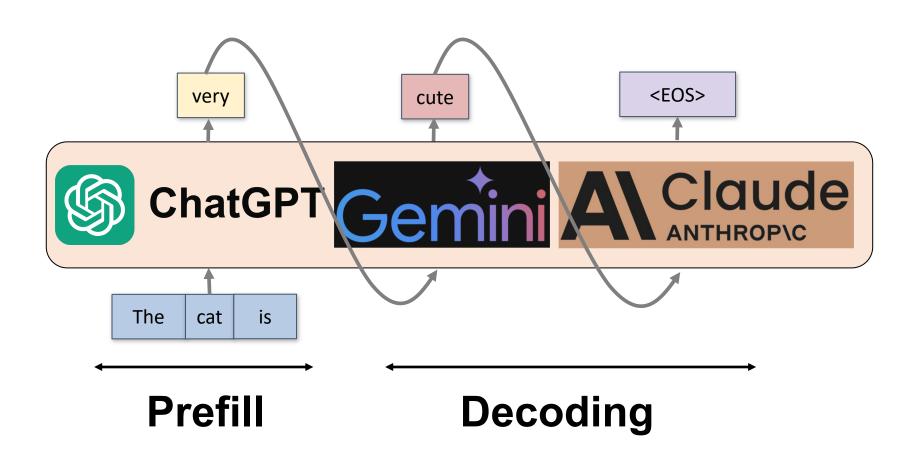
All adopt the Mixture-of-Experts (MoE) architecture!

Mixture-of-Experts (MoE)

- The mainstream architecture of large-scale LLMs
- Each token is only sent to the top-k experts



Autoregressive Generation of LLM

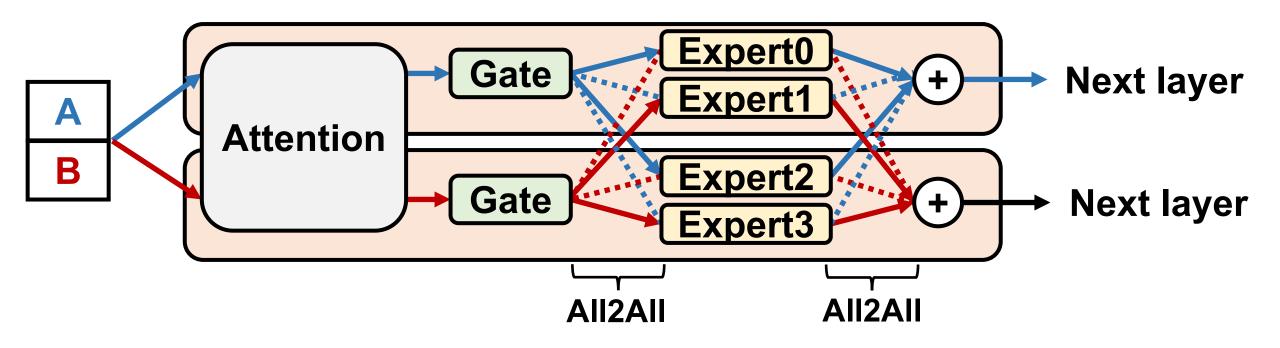


Characteristics of Two Phases in LLM inference

	Prefill	Decoding			
Attention	Compute-intensive	Memory-intensive			
FFN	Compute-intensive	From memory-intensive to compute-intensive as the batch size increases			

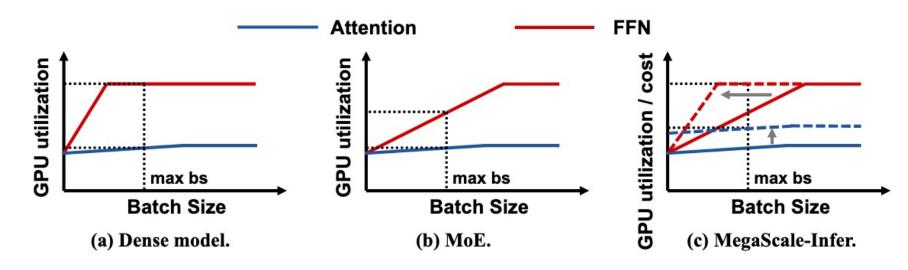
How to Achieve Efficient MoE Inference

- PD Disaggregation: Execute the prefill and decoding phases on different nodes
- Expert parallelism: Partition the parameters to different nodes at the granularity of experts



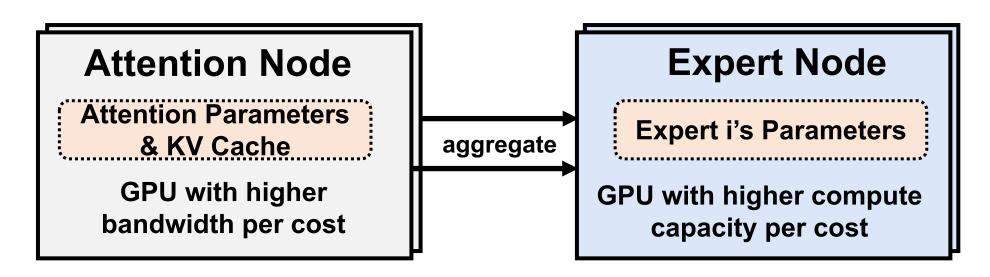
Issues in the Decoding Phase of MoE Inference

- Low GPU utilization
 - Attention is memory-intensive
 - Sparsity results in a small batch size for each expert and low computational intensity



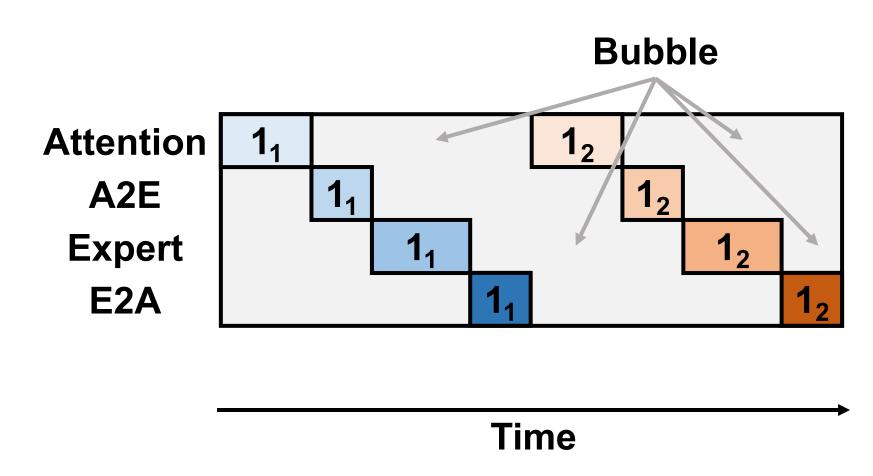
Solution: Disaggregate Attention and FFN

- Independent scaling: Aggregating multiple attention requests can improve the computational efficiency of FFN
- Heterogeneous deployment: Adopt more cost-effective hardware for each module



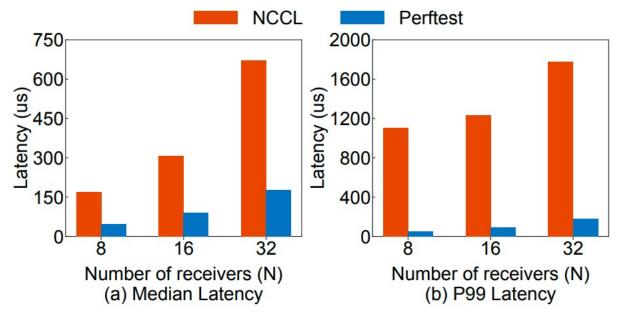
Challenge 1: Idle Resource Due to Dependencies

 Sequential computation of a batch will result in only a portion of the resources being utilized at the same time



Challenge 2: Requirement of High-Performance M2N Communication

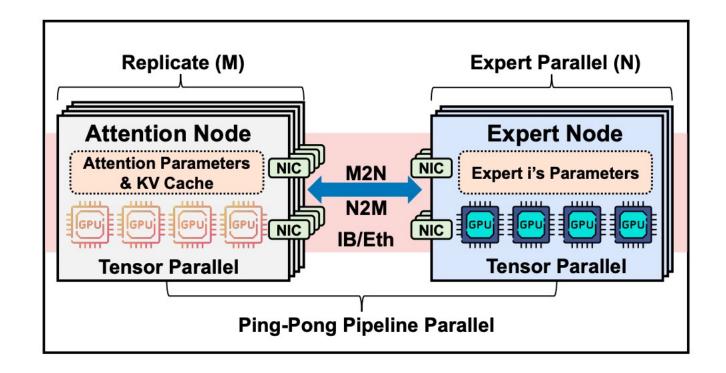
- Problems with existing communication libraries (NCCL):
 - Additional overhead such as data copy and group operation
 - High degree of instability



One sender sends 128K bytes of data to N receivers

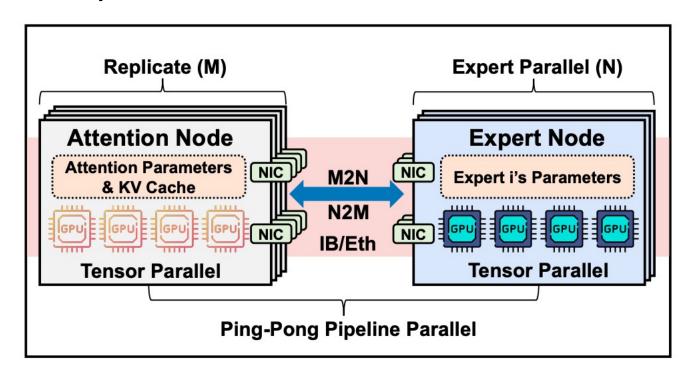
MegaScale-Infer

- Disaggregated expert parallelism
- Ping-pong pipeline parallel
- High-performance M2N communication library



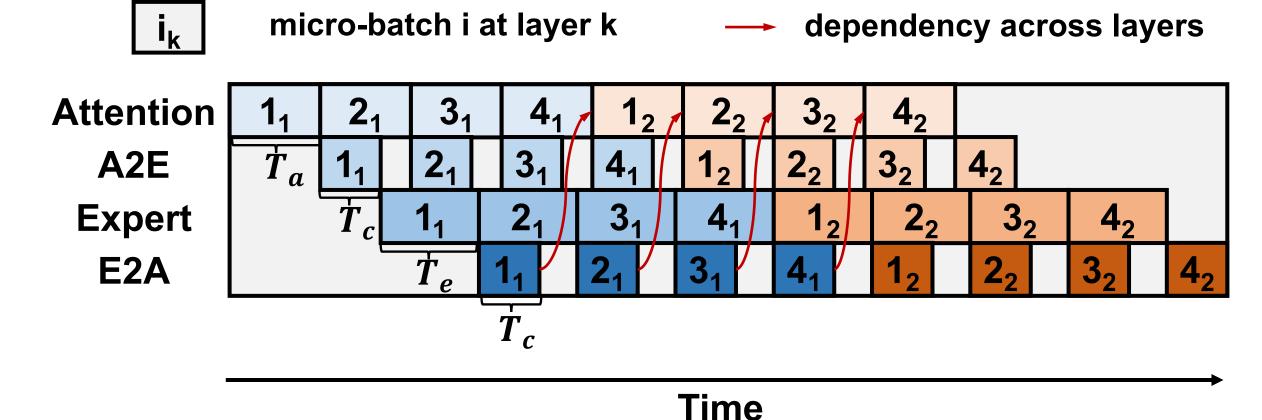
Disaggregated Expert Parallelism

- Multiple attention nodes process different requests in a replicated manner
- Expert nodes adopt expert parallelism, and each expert receives tokens from multiple attention nodes



Ping-Pong Pipeline Parallel

 Make full use of resources and overlap communication with computation through multiple micro-batches



Deployment Plan Search

 Objective: Maximize the throughput per unit cost while meeting the SLOs

- Constraints:
 - $T_a \approx T_e$
 - $T_c < T_a$
 - Sufficient number of micro-batches
 - Enough memory capacity
 -

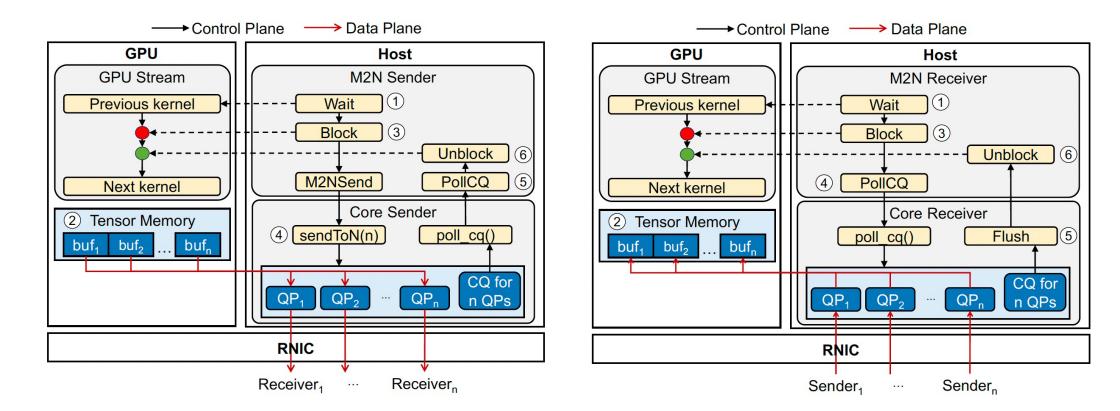
Heterogeneous Deployment

- Higher bandwidth per unit cost (H20) for attention
- Higher computational capability per unit cost (L40S) for FFN

Accelerator	Price	Cap.	Bw.	Comp. Performance per Cost		per Cost	
		(GB)	(GB/s)	(TFLOPS)	GB	GB/s	TFLOPS
L20	1.00	48	864	119.5	48	864	119.5
H800	5.28	80	3430.4	989	15.2	649.7	187.3
A800	2.26	80	2039	312	35.4	902.2	138.1
H20	1.85	96	4096	148	51.9	2214.1	80.0
L40S	1.08	48	864	362	44.4	800.0	335.2

High-Performance M2N Communication Library

- Minimize overhead such as data copies and group operations
- CPU manages send/receive operations on the control plane
- Data is directly transferred between the GPU and NIC



Evaluation

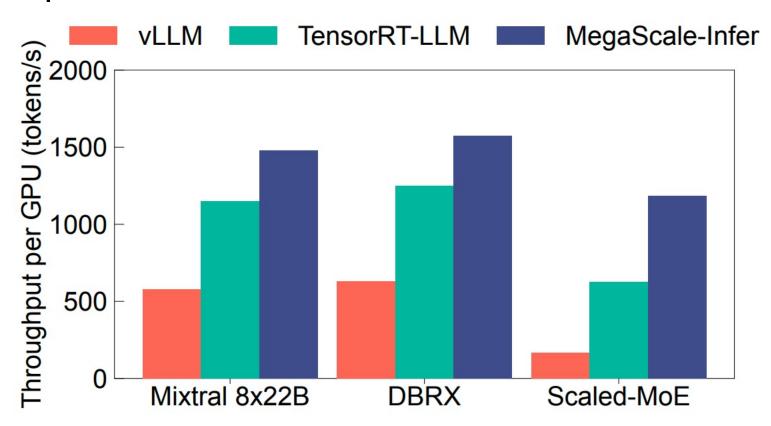
- Testbed
 - Cluster 1: NVIDIA 80GB Ampere GPUs
 - Cluster 2: NVIDIA H20 and L40S GPUs
- Models

Model	#Layers	Hidden Size	#Experts	top-k	Intermediate Size
Mixtral-8×22B	56	6144	8	2	16384
DBRX	40	6144	16	4	10752
Scaled-MoE	48	8192	32	4	8192

- Baseline
 - vLLM
 - TensorRT-LLM

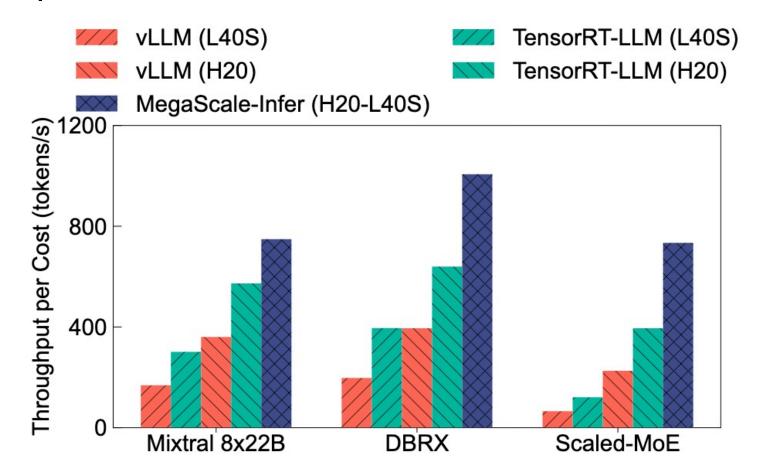
Homogeneous Cluster

 Improves decoding throughput per GPU by up to 7.11x and 1.90x compared to vLLM and TensorRT-LLM



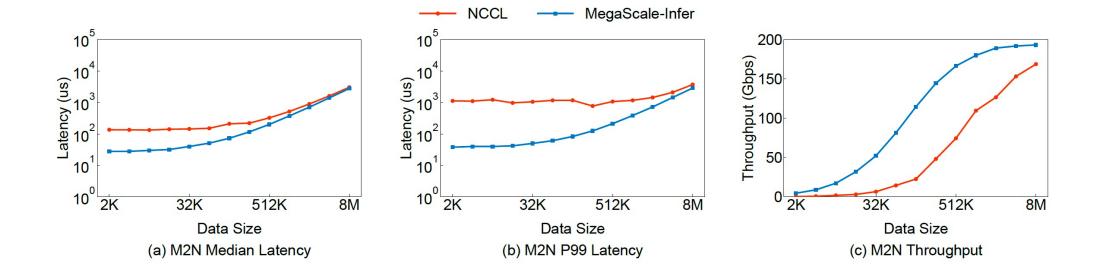
Heterogeneous Cluster

 Improves decoding throughput per GPU by up to 3.24x and 1.86x compared to vLLM and TensorRT-LLM



Performance of M2N Communication

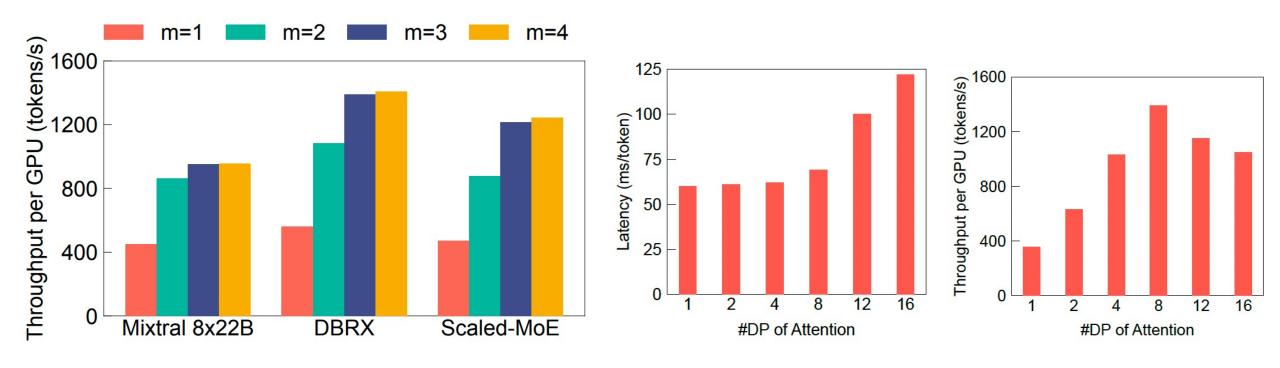
 Both median latency and tail latency are significantly better than NCCL, fully utilizing the network bandwidth



Influence of Deployment Plan

Number of micro-batch

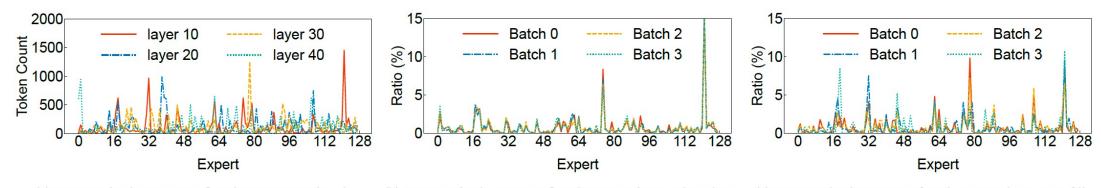
Number of attention node



Deployment Experience

Expert balance

- Severe load imbalance among experts
- During the decoding phase, the load on each expert is relatively stable
- During the prefill phase, the load on each expert varies significantly



- (a) Received token count of each expert in a batch.
- (b) Received token ratio of each expert during decoding. (c) Received token ratio of each expert during prefill.

Attention balance

- Differences in sequence length can cause variations in the computation time of different attention nodes
- Batch composition strategy based on estimated execution time

Conclusion

- MegaScale-Infer: Disaggregating attention and FFN for efficient MoE inference at scale
 - Optimal deployment plan with ping-pong pipeline parallelism
 - High-performance M2N communication

Thanks!

