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Why use Reinforcement Learning for LLMs?
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* Human preference alignment

« Safety and robustness
 Hallucination alleviation

* Reasoning (math, STEM)

» Agentic abilities for complex tasks
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What is RL for LLMs?
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What is RL for LLMs?
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What is RL for LLMs?
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Challenge: long-tail phenomenon

Long-tail distribution of output lengths (i.e., # decoding iterations)
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Possible solutions for long-tail rollout acceleration

Core problem: How to accelerate a small BS decoding with over-
provided resources?

» Larger Tensor Parallelism
» Improve aggregated memory bandwidth &
» High communication overhead &

» |solated long-tail generation
» |solate long-tail samples to dedicated resources &

> Can long-tail samples be identified? &



Our choice: Speculative Decoding (SD)

1. Alleviate the memory-bandwidth-bounded problem
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[2] EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty. In ICML'24.
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Our choice: Speculative Decoding (SD)

2. Algorithmically equivalent to auto-regressive decoding
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When apply Speculative Decoding to RL Rollout ...
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SpecRL Overview
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Figure 1: Overview of SpecRL.




Dynamic SD Configurations

Example:

Speculate the next 3 tokens
Select the top-2 most likely tokens to expand
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Dynamic SD Configurations

Speculate the next 3 tokens
Select the top-2 most likely tokens to expand

L' 3| draft iterations with a batch size of 2

\ /

»Larger means more speculation

»Larger accept length, more tokens
likely to be accepted &

»More wasted computation (=)

Sequential for large BS: 1 draft iteration with top-1 selection
Tree for small BS: 5 draft iterations with top-8 selection



Preliminary Results
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Online Draft Model Training
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RL steps “slowly”: periodically tuning the draft model ~ 100 RL steps.



Preliminary Results
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RL training for draft model

How to improve the SD speedup further?
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RL training for draft model

Apply RL to SD training to accelerate RL!

Draft Model
Generation
with Nucleus Target Model Accept Rate
Prompt Sampling Verification Yo, Iy, I3, I3, Iy
> » VIVIVIXIX
| J
|
1 Draft Tokens 1
Exploration Token-level

Reward Signal



Preliminary Results

Accept Length = 6.4
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Conclusion

« SpecRL: Accelerating the long-tail rollout stage in RL for LLMs
 Dynamic SD configuration that adapts to dynamic batch sizes
* Online training to align the draft model with the evolving target model
« Domain-specific RL algorithm to improve the draft model
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