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Why use Reinforcement Learning for LLMs?

• Human preference alignment
• Safety and robustness
• Hallucination alleviation
• Reasoning (math, STEM)
• Agentic abilities for complex tasks
• …
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What is RL for LLMs?
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Challenge：long-tail phenomenon
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Possible solutions for long-tail rollout acceleration

Ø Larger Tensor Parallelism 
Ø Improve aggregated memory bandwidth 😀
Ø High communication overhead ☹

Core problem: How to accelerate a small BS decoding with over-
provided resources?

Ø Isolated long-tail generation
Ø Isolate long-tail samples to dedicated resources 😀
Ø Can long-tail samples be identified? 🧐



Our choice: Speculative Decoding (SD)

[2] EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty. In ICML’24.

1. Alleviate the memory-bandwidth-bounded problem



2. Algorithmically equivalent to auto-regressive decoding

Our choice: Speculative Decoding (SD)



When apply Speculative Decoding to RL Rollout …
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SpecRL Overview



Dynamic SD Configurations

Example：
Speculate the next 3 tokens
Select the top-2 most likely tokens to expand
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Dynamic SD Configurations
Speculate the next 3 tokens
Select the top-2 most likely tokens to expand

3 draft iterations with a batch size of 2

ØLarger means more speculation
ØLarger accept length, more tokens 

likely to be accepted
ØMore wasted computation

😀
☹

Sequential for large BS: 1 draft iteration with top-1 selection
Tree for small BS: 5 draft iterations with top-8 selection



Preliminary Results



Online Draft Model Training

RL steps “slowly”: periodically tuning the draft model ~ 100 RL steps.



Preliminary Results



RL training for draft model
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RL training for draft model
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Preliminary Results

Accept Length = 4.27, 
which is saturated after

typical SD training

Accept Length = 6.4



Conclusion

• SpecRL: Accelerating the long-tail rollout stage in RL for LLMs
• Dynamic SD configuration that adapts to dynamic batch sizes
• Online training to align the draft model with the evolving target model
• Domain-specific RL algorithm to improve the draft model

Thanks!
chaojin@pku.edu.cn


