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Abstract—Disaggregating compute from storage is an emerging
trend in cloud computing. Effectively utilizing resources in both
compute and storage pool is the key to high performance. The
state-of-the-art scheduler provides optimal scheduling decisions
for workloads with homogeneous tasks. However, cloud applica-
tions often generate a mix of tasks with diverse compute and IO
characteristics, resulting in sub-optimal performance for existing
solutions. We present Pyxis, a system that provides optimal schedul-
ing decisions for mixed workloads in disaggregated datacenters
with theoretical guarantees. Pyxis is capable of maximizing over-
all throughput while meeting latency SLOs. Pyxis decouples the
scheduling of different tasks. Our insight is that the optimal solution
has an “all-or-nothing” structure that can be captured by a single
turning point in the spectrum of tasks. Based on task characteristics,
the turning point partitions the tasks either all to storage nodes
or all to compute nodes (none to storage nodes). We theoretically
prove that the optimal solution has such a structure, and design
an online algorithm with sub-second convergence. We implement a
prototype of Pyxis. Experiments on CloudLab with various syn-
thetic and application workloads show that Pyxis improves the
throughput by 3–21× over the state-of-the-art solution.

Index Terms—Disaggregated datacenter, resource allocation,
task scheduling.

I. INTRODUCTION

R ECENT advances in high-speed datacenter networks [1],
[2], [3], [4], [5] along with low-latency transport proto-

cols [6], [7], [8], [9], [10] have brought compute-storage disag-
gregation to the forefront. The emerging paradigm, serverless
computing, adopts compute-storage disaggregation, and relies
on disaggregated storage to store application data. Disaggre-
gated storage such as AWS S3 [11], Azure Blob Storage [12],
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Fig. 1. Network overhead of remote data accesses.

and Google Cloud Storage [13]—whereby remote storage nodes
are accessed over the network from compute nodes—forms the
backbone of modern cloud applications (e.g., Snowflake [14]),
both for scalability and high resource utilization.

However, accessing remote data still has a fundamental net-
work cost. For IO-intensive tasks that require multiple network
round-trip times (RTTs) or a large amount of data, it is very
expensive to move data from storage nodes to compute nodes.
Fig. 1 shows a pointer chasing and a data filtering example that
stresses the latency and bandwidth overheads, respectively.

Storage-side computation via remote procedure calls (RPCs)
has been proposed to alleviate this problem by offloading
compute to storage nodes. Commercial products have already
deployed storage-side computation that allows predefined or
restricted functions to execute on storage nodes [15], [16],
[17]. For example, AWS S3 Select [15] enables S3 to execute
data filtering functions written in a restricted SQL API. Recent
academic efforts [18], [19], [20], [21] propose to offload more
flexible user-defined functions to storage.

Storage-side computation is not a panacea either, as storage
nodes have rather limited compute power and are not intended
for compute-intensive tasks. Recent works argue that tasks
should be split between compute/storage nodes to fully utilize
resources on both sides, and the split ratio should be based on
how compute- or IO-intensive the tasks are [22], [23]. In this
regard, Kayak [22] is the state-of-the-art that proactively finds
the best split ratio for a given workload. It uses a gradient-based
algorithm to dynamically compute the split ratio at the workload
level, and then probablistically schedules each task in the work-
load to compute or storage nodes based on the split ratio. Kayak
is capable of maximizing the overall throughput while meeting
latency service level objectives (SLOs).

The key limitation of Kayak is that it assumes all tasks in a
workload are similar in terms of resource consumption. It does
not differentiate between potentially heterogeneous tasks and
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computes a single split ratio to schedule them all. In reality,
however, cloud applications usually generate a mix of tasks with
diverse compute-IO characteristics. For example, the Snowflake
dataset [14] shows that the ratio between total CPU time and
amount of data storage IO can vary by up to six orders of
magnitude (Section II). Consequently, existing solutions are not
adequate for such workloads. For example, given a workload
with a mix of compute-intensive and IO-intensive tasks, the
scheduler should assign the former to compute nodes and latter to
storage nodes, instead of using a common split ratio to schedule
both tasks.

We propose Pyxis, a system that optimally schedules mixed
workloads in disaggregated datacenters. Pyxis maximizes the
overall throughput while meeting latency service level objectives
(SLOs) of each task. It decouples the scheduling of different
tasks with individual split ratios. However, finding the optimal
split ratios for all tasks is challenging. Computing each split ratio
independently, e.g., applying Kayak’s algorithm to each task,
does not work well in practice. We empirically validate that this
approach has poor convergence even for a static workload with
only two type of tasks (Section II). On the one hand, concurrently
solving the split ratios results in the poor convergence due to
interference across tasks. On the other hand, sequentializing this
process, i.e., solving split ratios one at a time, avoids interference
but inevitably slows down the convergence. Therefore, the key
to solving the problem is to effectively prune the solution space.

Our insight is that the optimal solution has a clean structure
that can be captured by a single turning point among tasks. For
tasks that are more compute-intensive than the one at the turning
point, it is always better to schedule all of them to compute
nodes. Conversely, those that are more IO-intensive should all
be scheduled to storage nodes, i.e., none to compute nodes. Only
the task at the turning point may be split between com-
pute/storage nodes. This “all-or-nothing” structure translates to
a compact solution space, where per-task split ratios can be
derived from a single variable. We theoretically prove that the
optimal solution has such a structure (Section IV-B).

The turning point depends on the workload and the SLO tar-
gets. There is no closed-form expression that accurately accounts
for the relationship between split ratios, latency, and throughput.
Based on the “all-or-nothing” structure, we design a gradient-
based search algorithm to compute the turning point, and com-
bine it with a rate limiter that throttles the throughput to meet
SLO targets. The two components form a dual loop control [22].
We theoretically prove that our algorithm can converge to the
optimal solution with logarithmic running time. In addition, we
introduce another control loop that performs elastic scaling to
meet real-time demand, and provide mechanisms to handle load
skew. In summary, we make the following contributions.
� We propose Pyxis, a system that optimally schedules mixed

workloads in disaggregated datacenters. Pyxis maximizes
the overall throughput while meeting latency SLOs.

� We identify and prove that the optimal solution has an
“all-or-nothing” structure with a single turning point (Sec-
tion IV-B), and design an online algorithm to dynamically
compute the turning point with theoretical guarantees (Sec-
tion IV-C).

Fig. 2. Diverse characteristics of Snowflake queries.

� We implement a system prototype of Pyxis. Experiments
on CloudLab [24] with a variety of synthetic and applica-
tion workloads show that Pyxis improves the throughput by
3–21×over the state-of-the-art solution (Section VI). Pyxis
is open-sourced at https://github.com/TomQuartz/Pyxis.

II. MOTIVATION

Task model. Modern cloud applications typically comprise a
collection of fine-grained tasks, e.g., microservices [25], [26],
[27] or serverless functions [28], [29], [30], [31]. To be explicit,
we use task to denote a user program that can be invoked upon
requests, and instance to denote the running process of a task.

Following the compute-storage disaggregation architecture in
cloud computing platforms [14], [28], [32], a task is by itself
stateless, and relies on an external storage service (e.g., data
store or message queue) for data passing and state management,
which simplifies routing and data dependencies [33], [34], [35],
[36]. Consequently, tasks have two kinds of basic operations: IO
(accessing the data store) and compute (executing the application
logic). In case the external data store is sharded, we also assume
that each task only accesses data from a single storage shard,
which is common for the fine-grained tasks and functions that
constitute cloud workloads [37], [38], [39], [40]. This access
pattern distinguishes between the cost of compute- and storage-
side execution, where the latter retrieves data from local storage
and pays no network overhead.

Pyxis accepts a user-provided SLO target for each task and
focuses on completing the tasks within their SLOs. We allow
users to specify an SLO target relative to (e.g., as multiples
of) the task’s average (or other percentiles of) service time and
dynamically adjust SLOs.

Pyxis does not explicitly track inter-task dependency, so it
should be coupled with a DAG scheduler [41], [42] that monitors
task completion and submits ready tasks to Pyxis. We include
furthur disscussion in Section VII about Pyxis’ support for DAG
workflows.

Diverse characteristics of tasks. Tasks may significantly differ
in their compute and IO characteristics. Snowflake [14] is a
representative data warehouse that disaggregates compute from
storage. Fig. 2 visualizes the statistics of∼70 million queries in
its public dataset.1 The ratio between CPU time and data storage
IO can vary by up to six orders of magnitude. Even queries with

1https://github.com/resource-disaggregation/snowset
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Fig. 3. The optimal solution outperforms Kayak by a wide margin through
per-task scheduling.

the same amount of computation can markedly differ in their
amounts of IO.

Opportunity: per-task scheduling. A workload is a set of tasks
that collaboratively implement end-to-end functionalities. The
scheduling problem we focus on is to find the best way to split
tasks in a given workload between compute and storage nodes.
Our goal is to maximize overall throughput while satisfying the
SLO of each task. For a particular task, we use split ratio to
denote a fraction x ∈ [0, 1] such that x and 1− x of its instances
are executed on storage and compute nodes, respectively. The
state-of-the-art solution, Kayak [22], proactively computes the
optimal split ratio at the workload level, i.e., a single split ratio is
configured for all tasks. Kayak assumes that tasks are homoge-
neous, i.e., with similar compute-IO characteristics. For generic
mixed workloads in the real world, Kayak is sub-optimal as its
assumption no longer holds. Consider a workload consisting
of an IO-intensive task A and a compute-intensive task B. An
intuitively better solution is to perform per-task scheduling, i.e.,
assigning task-A to storage nodes where it can avoid network
overheads, and task-B to compute nodes to utilize the high
compute power.

To confirm our conjecture, we perform an experiment with
a synthetic workload. Task-A issues four storage accesses to a
table of 48 KB large entries and performs 50 ns computation;
task-B issues one access to a table of 64B small entries and
performs 50 μs computation. We vary the fractions of task-A
and task-B to make the workload more biased towards IO
or compute. We compare Kayak against the optimal solution
obtained through a parameter sweep over the split ratios of the
two tasks. As shown in Fig. 3(a), the optimal solution improves
the overall throughput by 3–5× over Kayak, which motivates the
need to decouple the scheduling of different tasks with individual
split ratios. We validate in Section VI that there could be a wider
gap between Kayak and the optimal solution depending on the
number of compute and storage nodes.

Challenge: jointly solving split ratios. While in general the
optimal solution prefers to send compute-intensive tasks to com-
pute nodes and IO-intensive tasks to storage nodes, the exact split
ratios depends on the workload. Let (xA, xB) be the split ratios
for task-A and task-B. Fig. 3(b) shows that the optimal split ratios
are (100%, 16%), (100%, 14%) and (100%, 0%) under three
different settings. Besides workload configurations, the optimal

Fig. 4. Applying Kayak to each task is impractical. (a) Oscillations caused by
concurrent updates. (b) Slow convergence for sequential updates.

solution also depends on latency SLO targets. However, there
is no closed-form expression that explicitly models throughput
as a function of split ratios and SLO targets. Kayak proposes a
dual loop algorithm to solve this blackbox optimization problem,
at the workload level. The inner loop performs rate limiting to
enforce SLO, and the outer loop performs gradient ascent over
the split ratio to optimize throughput. Since it is impossible to
derive analytical gradient from the blackbox, we have to estimate
the gradient by waiting for a time window after updating the split
ratio and observe the delta in throughput.

To solve the split ratios per task, a naive approach is to
apply Kayak’s algorithm to each task independently. However,
while the gradient estimation method is well-defined for a single
variable, it is problematic when optimizing multiple split ratios.
In fact, we have to update the split ratios one-at-a-time; oth-
erwise, the delta in throughput reflects the composite effect of
several concurrent updates, which leads to corrupted gradients
and hence oscillations. To demonstrate this effect, we apply the
concurrent method to the two tasks in the previous experiment.
Fig. 4(a) confirms that concurrently solving the split ratios
results in poor convergence, even if there are only two tasks.
Note that using randomized time windows per task is not helpful,
since the updating process would still be interleaved.

In contrast, the one-at-a-time counterpart avoids interference
across tasks with sequential updates, but inevitably leads to slow
convergence. This approach does not scale with the number of
tasks due to the large solution space, which is an n-dimensional
cube for n tasks. To evaluate this method, we randomly generate
16 tasks (Section VI) and vary the number of tasks in the work-
load from 2 to 16. Fig. 4(b) shows the dynamics of normalized
throughput. The sequential method becomes computationally
intractable as the number of tasks grows up. It cannot converge
in 30 seconds with 16 tasks. Therefore, the critical problem is
how to effectively prune the solution space.

III. PYXIS OVERVIEW

The insight of Pyxis is that the optimal solution has an “all-
or-nothing” structure with a single turning point, which greatly
simplifies the solution space.

Fig. 5 shows the overall architecture of Pyxis. It consists
of three components: the disaggregated compute and storage
nodes, and the scheduler. Tasks are installed at compute/storage
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Fig. 5. Pyxis architecture.

nodes as user-defined functions (Section V). Clients send task
invocation requests to the scheduler. The scheduler identifies
tasks from the task ID embedded in the request, and forwards it
to compute/storage nodes.

Compute and Storage nodes dispatch requests to its workers.
The number of workers is configured based on the capacity of
the server (e.g., the number of CPU cores). The storage nodes
collectively stores the data of applications. Storage node workers
directly access the data in local storage, while compute node
workers send remote key-value queries. Note that the storage
nodes in Pyxis can be based on persistent storage or memory,
offering the service of a key-value store or shared cache. Data
may be sharded across storage nodes. For the sake of clarity
when deriving our solution in Section IV, we assume for now
that each task only accesses a single shard, which is a common
requirement for stored procedures [43], [44], [45]. We discuss
Pyxis’ support of multi-shard tasks in Section VII. Clients
include necessary information in the request for the scheduler
to infer data locality. The candidate node of scheduling must
host the requested shard if it is a storage node; compute nodes
are not restricted. Both compute and storage nodes monitor
runtime costs of tasks, and piggyback statistics on responses
to the scheduler.

The Scheduler consists of a Rate Limiter and a Request Ar-
biter. Together they proactively compute the optimal assignment
of tasks to compute or storage nodes. The Rate Limiter monitors
end-to-end latencies and enforces SLO constraints. It throttles
overflowing requests when the servers are under high load. The
Request Arbiter proactively computes the optimal turning point
based on task characteristics collected from compute/storage
nodes. The two components form a dual loop control [22]. The
Rate Limiter runs the fast/inner loop and the Request Arbiter
runs the slow/outer loop. Given the current turning point of the
outer loop, the inner loop determines the best throughput under
SLO constraints. The outer loop in turn adapts the turning point
using the outcome of the inner loop.

IV. PYXIS DESIGN

In this section, we first formulate the scheduling problem for
mixed workloads in disaggregated datacenters (Section IV-A).

TABLE I
KEY NOTATIONS IN PROBLEM FORMULATION

Then we analyze the structure of the optimal solution (Sec-
tion IV-B). We present an online gradient-based algorithm to
find the optimal solution in Section IV-C. Finally we provide
extensions of the algorithm to support resource elasticity (Sec-
tion IV-D) and handle load skew (Section IV-E).

A. Problem Formulation

The blackbox. Table I summarizes the key notations. Let pi
be the fraction of task-i in the workload,

∑n−1
i=0 pi = 1. We

assume that pi and the number of tasks n is stable (but unkown
a priori) in a given period of time, since it usually takes a fixed
combination of tasks to compose an application. Section V
describes how we handle the dynamic case where pi, n, and
the compute-IO characteristics of tasks change over time. Let
R be the overall throughput, and the throughput of task-i is
piR. Denote the per-task split ratios by �x = (x0, x1, . . ., xn−1),
where xi ∈ [0, 1] is the fraction of requests for task-i that are
scheduled to storage nodes. Let τi be the random variable of
latency for task-i instances, and Ti the SLO metric for τi, e.g.,
99%-tile latency. Given the fraction pi of each task, τi and Ti are
functions of both R and �x, since resources are shared between
collocated instances. Let ti be the user-provided SLO target of
task-i. We aim to maximize R while satisfying each ti. We have
the following problem.

max
�x

R (1)

s.t. Ti(R, �x) ≤ ti, 0 ≤ i ≤ n− 1 (2)

We can apply Kayak’s dual loop control [22] to solve the
blackbox problem. Formally, given split ratios �x, let R(�x) be the
maximum throughput under latency SLOs, which is implicitly
determined by constraint 2 [22]. The inner loop approximates
R(�x) using standard rate limiting techniques, e.g., AIMD [46].
The outer loop then performs gradient ascent over �x to optimize
R(�x). As described in Section II, concurrently solvingxi leads to
oscillations, while updating xi one-at-a-time is computationally
intractable due to the vast solution space of �x. We next derive
a fine-grained model of the system so that we can prune the
solution space.

Fine-grained model. While there is no closed-form expression
for τi, queuing theory predicts that latency is a monotonic
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function of system load,2 which gives us the opportunity to shed
some light on the blackbox. We start by factoring τi into two
parts, τCi and τSi , which are the random variables of latency
for task-i instances when they are scheduled to compute/storage
nodes. Similar to Ti, let TC

i , TS
i be the tail latency metrics for

τCi , τSi , respectively. Depending on the split ratio xi, we have
the following relationship between TC

i , TS
i and Ti

Ti = TC
i , xi = 0 (3)

Ti = TS
i , xi = 1 (4)

Ti ≤ max
{
TC
i , TS

i

}
, xi ∈ (0, 1) (5)

Consequently, in order to satisfy the SLO constraint 2 of the
blackbox model, it suffices to bound TC

i and TS
i respectively.

We next incorporate the system load into our model. Let ci, si
be the end-to-end cost of a task-i instance on compute/storage
nodes,3 and letC, S be the capacity of respective resources. ci, si
are general abstractions of runtime cost and depend on the actual
deployment. As for our underlying framework Splinter [18], ci
refers to the compute-storage bandwidth cost (measured as the
amount of remote data transfer), and si refers to the CPU cost
on storage nodes. ci and si highlights the remote data transfer
overhead and the limited compute power on storage nodes.
CPU is typically not the contended resource for compute nodes,
especially when we support elastic scaling of compute nodes
(Section IV-D). We extend our cost model to multiple resources
in Section VII.

Define ρC(R, �x) :=
∑

i piR(1− xi)ci/C and ρS(R, �x) :=∑
i piRxisi/S as the load on bandwidth and storage CPU,4

which is the occupied capacity normalized by the total capacity.
Following the literature of queuing theory [47], we assume that
the arrival of tasks follows Poisson distribution, and TC

i , TS
i are

monotonic functions of ρC and ρS , respectively. This suggests
that we can bound TC

i , TS
i by minimizing ρC , ρS . Finally, we

derive an alternative formulation as follows.

max
�x

R (6)

s.t. ρC(R, �x) ≤ 1 (7)

ρS(R, �x) ≤ 1 (8)

TC
i (ρC) ≤ tCi , 0 ≤ i ≤ n− 1 (9)

TS
i (ρS) ≤ tSi , 0 ≤ i ≤ n− 1 (10)

where tCi , t
S
i are the surrogate SLO targets for task-i instances

on compute/storage nodes.
Remark. The equivalence between the original formulation

(1)–(2) and the alternative formulation (6)–(10) is established by
(3)–(5). The alternative formulation is easier to solve because
ρC , ρS have closed-form expressions. However, the surrogate
SLO targets tCi , t

S
i are still unknown. Fortunately, the optimal

2Applies to M/G/n queues under generic task distributions [47], [48]. M/G/n
is widely adopted in both thoery and system literature [49], [50].

3Formally, ci, si are random variables, but it suffices to use their expectation
for the queuing theory involved in this paper [47], [48].

4For now, we omit the locality constraints and assume that any node can be a
candidate of scheduling. We incorporate data locality in Section IV-E.

solution has an appealing structure that allows us to bypass tCi , t
S
i

and develop an efficient algorithm.

B. Structure of the Optimal Solution

The insight of Section IV-A is to minimize ρC and ρS . More-
over, to compute the optimal solution, we only need to consider
�x where the corresponding pair (ρC , ρS) is Pareto Optimal, i.e.,
cannot decrease one variable without increasing the other. In
other words, for each fixed ρC , the best �x should minimize ρS ,
and vice versa. The formal result is given in the appendix [51],
available online. The intuition is that any (ρC , ρS) pair that is not
Pareto Optimal translates to non-tight SLO constraints, which
possibly allows the throughput to increase. Since ρC , ρS have
closed-form expressions, we can solve it analytically. We first
use an example to illustrate the structure of the optimal solution.

Example. Denote (ci/C, si/S) as the normalized cost vector
of task-i. Consider three tasks A,B,C with equal throughput of
0.5 and cost vectors (1,0.1),(1,1) and (0.1,1). Initially, suppose
all tasks are scheduled to compute nodes, which is not feasi-
ble with ρC = 1.05. Suppose the desired ρC is 0.3, then we
have to push some instances to storage nodes. In order to min-
imize ρS , for every unit of load removed from ρC , the increase
in ρS should be as small as possible. In fact, by pushing task-i
instances, we have ΔρS

ΔρC
= si/S

ci/C
. It follows that task-A has the

highest priority to run on storage nodes, followed by B and C.
The optimal split ratios are xA = 100%, xB = 50%, xC = 0%,
which yield ρC = ρS = 0.3.

All-or-nothing scheduling with a single turning point. We ob-
serve from the example that there is no absolute classification for
a task to be compute-intensive or IO-intensive. Instead, whether
a task is more suitable to run on compute or storage nodes
depends on the relative ranking of si/ci. After sorting the tasks
in ascending order, we start from the first task and gradually push
its instances to storage nodes, until ρC reaches the optimal value.
This implies that most tasks should have a split ratios of 100%
(all to storage nodes, for tasks at the front) or 0% (none to storage
nodes, for those at the end). Only a single task in the middle
may have a partial split ratio, i.e., splitting its instances between
compute/storage nodes. This particular task, denoted by task-k,
appears as the turning point of “all-or-nothing” scheduling. We
formalize our findings in Theorem 4.1.

We highlight the intuition here and defer the full proof to the
appendix [51], available online. Let �x be an optimal solution.
Let pair i < j be a bad pair if xi < 1 and xj > 0. When the
number of bad pairs is non-zero, we can always build another
optimal solution with less bad pairs. We do so by trading task-ion
compute nodes for task-j on storage nodes, under the constraint
that ρC remains the same. Because si/ci < sj/cj , for any unit
load of ρC exchanged between i and j, ρS always decreases,
so the SLO constraints are still satisfied. We keep trading until
xi = 1 or xj = 0. Consequently, the new solution eliminates
one bad pair and preserves the same optimal throughput. We
may derive an “all-or-nothing” solution after eliminating all bad
pairs. We empirically verify the correctness of Theorem 4.1 in
Section VI-A and discuss the our limitation in Section VII.
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Theorem IV.1. Let tasks be sorted by si/ci in ascending order.
There exists an optimal solution �x with a turning point k, s.t.

x0 = x1 = · · · = xk−1 = 100%, (11)

xk ∈ [0, 100%], (12)

xk+1 = xk+2 = · · · = xn−1 = 0% (13)

Note that it is possible for multiple tasks to have the same si/ci
as their compute-IO characteristics. In that case, we can break
ties by comparing task IDs. Therefore, there is a total order on
the set of tasks such that the turning point is well-defined. Tasks
having the same compute-IO characteristics are equivalent in
terms of resource efficiency in our formulation, so it does not
matter which task is split by the turning point. Therefore, we
can break ties arbitrarily.

C. Scheduling Algorithm

Theorem 4.1 suggests that the solution space can be captured
by a single variable, as opposed to the n-dimensional cube of �x.
We use a real number α ∈ [0, 1] to represent the turning point in
the theorem, where �x(α) is given by

xi =

⎧⎪⎨
⎪⎩

1 α ∈ [(i+ 1)/n, 1]

αn− i α ∈ (i/n, (i+ 1)/n)

0 α ∈ [0, i/n]

(14)

Consequently, we can simplify R(�x) of the blackbox model
(Table I) to R(α), and the outer loop is responsible for finding
α∗ := arg maxαR(α).

Algorithm for outer loop. Our algorithm assumes the uni-
modality of R(α) [52], [53], [54], i.e., monotonically increasing
on one side and monotonically decreasing on the other side,
which is a weaker condition than the concavity assumption of
standard maximization methods [55]. We verify the unimodality
of R(α) in Section VI-A.

Specifically, we maintain a lower boundα and an upper bound
α forα∗, and iteratively prune the search space. In each iteration,
we equally divide [α, α] into M segments, where M is a con-
stant, and perform grid search over the endpoints. Our goal is to
find a local maximum on the grid, i.e., three endpoints αi−1 <
αi < αi+1 such that R(αi) > R(αi−1) and R(αi) > R(αi+1).
The unimodality ofR(α) implies thatαi−1 < α∗ < αi+1, so we
can shrink the search space to [αi−1, αi+1], which consists of
two adjacent segments. Since each segment is a 1/M fraction
of the original search space, we can guarantee that the problem
size is reduced by a constant factor after each iteration.

Algorithm 1 shows the pseudocode. We make one step for-
ward at a time, and wait for a time window after updating α to
estimate the gradient R′(α) (line 3). We use R′(α) to determine
the local maximum (line 5) and the direction of the next step
(line 11). If the local maximum is found, we shrink [α, α] and set
step sizeΔ to a 1/M fraction of the interval for the next iteration.
The direction of steps alternates across iterations, because the
sign of R′(α) is reversed upon detecting the local maximum.

In practice, the search space is initialized as [0, 1], and Algo-
rithm 1 runs in the outer loop until α− α is sufficiently small,
where an arbitrary point in [α, α] is used as α∗. The scheduler

Algorithm 1: Iterative Algorithm for Finding α∗.
1: procedure Update-α
2: /∗ estimate gradient ∗/
3: R′(αt)← R(αt)−R(αt−1)

αt−αt−1
4: /∗ find local maximum ∗/
5: if R′(αt−1)·R′(αt) < 0 then
6: /∗ prepare for next iteration ∗/
7: α← max{αt−2, αt}
8: α← min{αt−2, αt}
9: Δ← (α− α)/(2 M)
10: /∗ determine the direction of next step ∗/
11: αt+1 ← αt + sign(R′(αt))Δ
12: t← t+ 1

continues to profile the number of tasks and their runtime costs
after convergence. Upon detecting a change in the workload
(Section V), it resets α and α and restart the loop.

Convergence analysis. Algorithm 1 is guaranteed to converge
with logarithmic running time (full proof in the appendix [51]),
available online.

Theorem IV.2. For arbitrarily small δ andM > 2, Algorithm 1
converges to [α∗ − δ, α∗ + δ] within O(log(1/δ)) steps, regard-
less of the initial state.

The intuition of the proof is that the search space is reduced
by M/2 after each iteration. By the unimodality of R(α), once
we find a local maximum during the grid search, we can be
sure that α∗ is within the most recent two consecutive steps.
We then shrink [α, α] to cover the two steps, which gives the
desired reduction factor. It follows that the number of iterations is
logarithmic, and the number of steps in each iteration a constant
M , concluding the proof.

Remark. A key advantage of Algorithm 1 over convex op-
timization methods [55] is that our approach is more robust
to variance in throughput. Algorithm 1 only uses the sign of
gradient, while convex methods uses the value of gradient. This
allows us to use a small time window in gradient estimation to
speed up convergence. In addition, convex methods also use the
value of gradient to as the stopping criterion, which is sensitive
to fluctuations, while ours is based on length of search interval.
Finally, our assumption of unimodality is weaker than concavity
required by the convex methods (for maximization). We com-
pared our method against convex methods in Section VI-B.

D. Supporting Resource Elasticity

Given a static provision, the rate limiter of the scheduler
(Section III) enforces SLOs by throttling requests. To meet
real-time demand, we support elastic scaling of compute nodes.
We focus on compute nodes as they are provisioned based on
the amount of tasks submitted by users, which varies from time
to time. Storage provision, on the other hand, are determined by
the amount of persistent data, which is relatively stable. This is
in line with production systems. For example, Snowflake [14]
elastically scales the number of AWS EC2 instances inside
a Virtual Warehouse (VW), and charges customers based on
service time and VW size.
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Fig. 6. Characteristics of 16 sampled tasks. Data size equals number of data
accesses × object size.

To support elasticity, we wrap the α control loop inside
another slower/outer loop. When requests are dropped, this loop
gradually increases the amount of compute resources until all
demand can be met. Otherwise, it utilizes the load variable
ρC , ρS of the α control loop and searches for the minimum
amount of compute resources without impacting throughput or
violating SLOs. Our current prototype supports scaling at CPU
core-level granularity, and can adapt to other units defined by
the capacity of workers.

E. Handling Locality and Skew

Note that ρC and ρS represent the average load on bandwidth
and storage CPU. In practice, tasks access specific shards and
have locality constraints on storage nodes. Under skew, ρC , ρS
may deviate from the actual load on some hotspots, which leads
to suboptimal performance. For example, let there be two tasks
A,B; A precedes B in the si/ci ascending order. Suppose task-A
instances always access the hotspot, while task-B instances may
access the hotspot or some other shard. The “all-or-nothing”
scheduling may choose to send none of task-B to storage nodes,
as it observes high latency due to the hotspot and cannot push
any more tasks to the storage pool. However, those of task-B
that access the non-hotspot may still benefit from storage-side
execution.

We introduce placement groups to address this problem. Each
placement group has its own set of compute/storage nodes. Tasks
(distinguished by data locality) are mapped to a single group.
When there is no skew, i.e., ρC , ρS is representative of the actual
load, all nodes and tasks belong to the default placement group.
If a storge node’s local load exceeds the average load by some
threshold, it signals the scheduler to isolate it in a new placement
group. The number of compute nodes in this new group can be
arbitrary, as we support elastic scaling; we can configure the
initial number based on the compute-intensity of tasks in this
group. Each group independently performs dual loop control and
elastic scaling, and schedules tasks with its own turning point.
Unlike the concurrent version of Kayak (Section II), there is no
interference across groups because resources are isolated.

As load shifts overtime, we can merge groups back to the de-
fault group. Theoretically, we can configure a placement group
for each storage node, but the overhead of running multiple
instances of dual loop control might overwhelm the scheduler.

TABLE II
TASK CHARACTERISTICS OF THE APPLICATION WORKLOAD

Fig. 7. R(α) is unimodal, and its maximum coincides with the theoretical
upper bound.

We do not investigate the impact of the maximum number of
placement groups due to our limited cluster size.

V. IMPLEMENTATION

We implement a prototype of Pyxis with∼4000 lines of code
in Rust. We use the in-memory key-value store Splinter [18] as
the data store on storage nodes.

User-defined functions. Users write tasks as Splinter exten-
sions, which are invoked as stackless co-routines. We provide the
same Get/Put API for extensions to access both local and remote
data store. Users code only once, and the placement decision is
transparent to extensions.

Dynamic workloads. The first time the scheduler sees a new
task, it schedules that task to compute and storage nodes with a
default split ratio (empirically set to 50%) to profile the runtime
costs ci, si, until there are enough samples to make a reliable
estimation. For dynamic tasks whose characteristics change over
time, the scheduler maintains a moving average of ci, si and
compares them with the statistics collected during the period. If
there is a significant difference in either cost, the scheduler resets
the moving average and falls back to the default split ratio for that
task. The scheduler also periodically sorts the tasks it recently
observes, which handles dynamic tasks and addition/removal of
tasks.

VI. EVALUATION

Methodology. Our experiments are conducted on Cloud-
Lab [24] XL170r machines, each configured with eight CPU
cores (Intel E5-2640v4 2.4 GHz), 64 GB RAM, and Mellanox
ConnectX-4 25 GB NIC. Each worker uses one CPU core,
and each node hosts eight workers. By default, we set up one
scheduler node, eight compute nodes and one storage node. To
demonstate the scalability of Pyxis, we use up to 64 compute
nodes and eight storage nodes. In line with Kayak [22], we
collocate a closed-loop load generator with the scheduler. We
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Fig. 8. Convergence under mixed workloads with different number of tasks.

use the loop frequency reported in Kayak for the dual loop
control, which is 20 Hz for the outer loop (α control) and
200 Hz for the inner loop (rate control). The factor M is set
to 5 for Algorithm 1. We perform sensitivity analysis over M in
Section VI-G.

Workloads. Synthetic tasks are configured to issue a series of
key-value operations, followed by a certain amount of compu-
tation. First, we use a workload with tasks A,B in Section II as
two polarized tasks in terms of IO and compute. Second, we
randomly sample 16 tasks to capture the diverse characteristics
of cloud applications. Each task is represented by the tuple
(number of data accesses, object size, computation), and we use
the parameters of the two polarized tasks as upper bound and
lower bound for the three fields. The number of data accesses is
sampled uniformly while the rest are sampled from log-uniform
distribution. Specifically, the number of data accesses is sampled
from one to four, and the object size is sampled from 64B to
48 KB. We visualize the sampled tasks in Fig. 6. By default, We
use equal fractions for all tasks in a mixed workload. We use
the term ”fraction” to denote the number of requests targeting
a specific task relative to the total number of requests. Thus
”equal fractions” means that each task in the workload receives
the same number of requests.

We also implement a realistic application workload that fea-
tures hybrid queries over vector and scalar data. The workload
includes four tasks: (i) aggregation over vector data (aggr-V);
(ii) top-k query using vector distance as the metric of simi-
larity (top-k); (iii) aggregation over scalar data (aggr-S); (iv)
authentication with cryptographic hashing (auth). As shown
in Table II, each task maps to a canonical category in IO-
{intensive,light}×compute-{intensive,light}.

Metrics. We define the SLO metric of a task as the 99%-tile
latency normalized by the mean service time,5 which is in line
with ZygOS [50]. The SLO target of a mixed workload is defined
as a constant such that the SLO metrics of all tasks do not exceed
that constant. We then measure the maximum throughput under

5We use 5 μs for tasks with mean service time <5 μs, since it is hard to bound
the tail latency of theses tasks using Splinter’s extension interface.

Fig. 9. Convergence under dynamic workloads: (a) varying task fractions.
and (b) varying the set of tasks.

the SLO target. Unless otherwise specified, we set the SLO target
to 10.

Baselines. Our primary baseline is Kayak [22], the state-of-
the-art solution for task scheduling in disaggregated datacenters.
In addition, we evaluate an extended version of Kayak, Kayak+,
that performs sequential updates over individual split ratios,
as described in Section II. Kayak+ has the same theoretical
capability as Pyxis to compute the optimal solution, but is slow
in convergence due to its vast solution space (Section VI-A). For
reference, we also obtain the upper bound of our algorithm by
performing a parameter sweep over α.

A. Convergence

Verifying Theorem 4.1 and the unimodality of R(α). We use
the two polarized tasks A,B and perform parameter sweeps
over: (i) split ratios (xA, xB) to obtain the theoretical optimal;
(ii) turning point α to obtain the curve of R(α). As shown in
Fig. 7, the maximum of R(α) coincides with the optimal, which
confirms the “all-or-nothing” structure of Theorem 4.1. More-
over,R(α)monotonically increases in [0, α∗] and monotonically
decreases in [α∗, 1], which validates the unimodality assumption
of R(α) and supports the correctness of Algorithm 1.

Basic convergence under mixed workloads. We evaluate the
convergence of our algorithm under the same setting as Fig. 4(b).
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Fig. 10. Performance under different resource configurations.

Fig. 8 shows that Pyxis converges to the optimal solution in
<800 ms, regardless of the number of tasks. In comparison,
the time required by Kayak+ in Fig. 4(b) increases rapidly with
the number of tasks. Pyxis improves the convergence speed by
5–30× over Kayak+. In addition, the latency of task instances
satisfies the SLO target with minor fluctuations. We highlight a
few observations.
� The α stays idle for a short period in the beginning, as the

cost and order of tasks are yet unknown to the scheduler.
The scheduler uses the default split ratio (50%) to profile
tasks on compute/storage nodes (Section V). By the end
of this stage, it sorts the tasks and starts from α = 0.

� There may be a drop in throughput as α = 0 does not nec-
essarily perform better than using the default split ratio for
all tasks. The throughput oscillates because our algorithm
has to go acrossα∗ before shrinking the search space. There
are at most two oscillations.

� Our algorithm is stable after convergence. It is insensitive to
variance in throughput, since the stopping criterion is based
on α− α instead of gradient. We do not re-compute α∗

unless we detect a change in the workload (Section IV-C).
Dynamic workloads. We use four tasks from Fig. 6 and con-

sider two settings: (i) the set of tasks is fixed, and the fractions
of tasks changes over time; (ii) the set of tasks changes over
time. In the first setting, we use four stages where each task in
turn dominates with the largest fraction, and each stage lasts for
five seconds. In the second setting, we add a new task for every
five seconds; after all four tasks are present, we loop back to the
initial stage. Fig. 9 shows the dynamics of the throughput andα.
Pyxis responds quickly to the dynamic workload. It consistently
achieves sub-second convergence while meeting SLOs.

B. End-to-End Performance

Performance improvement. We compare the performance of
Pyxis against the baselines under different resource configura-
tions. Let C:S be the ratio between the number of CPU cores
on compute and storage nodes. We configure the storage node
with four cores and vary C:S from 4:1 to 32:1. We use the two
polarized tasks A,B with fractions of 20% and 80%. Fig. 10
shows the maximum throughput as a function of SLO target.
Pyxis improves the saturated throughput by 3–21× over Kayak.
Kayak saturates earlier because it uses a single split ratio for all
tasks, and has bottleneck either in IO or compute while the entire

cluster remains under-utilized. Pyxis achieves high throughput
with per-task scheduling. Kayak+ performs worse than Pyxis
because it needs to control every single split ratio xi. It is hard
for Kayak+ to converge exactly to the “all-or-nothing” structure
of the optimal solution. The gap between Pyxis and Kayak+
is amplified as more resources are added to the pool. Moreover,
Kayak+ is a convex method that uses the value of gradient, which
is sensitive to fluctuations in throughput, making it even harder
for Kayak+ to stick to the optimal solution (Section IV-C).

Gap between Pyxis and upper bound. We further vary the
fractions of A,B in the previous experiment and compares the
saturated throughput of Kayak, Pyxis and the upper bound under
different combinations of workload and resource configurations.
Table III shows the improvement factor of Pyxis over Kayak and
the gap between Pyxis and upper bound. When task-A:task-B
is 20%:80%, Pyxis’s throughput increases linearly with more
compute nodes. This is because task-B (compute-intensive)
dominates and Pyxis schedules it to compute nodes to avoid
storage-side bottlenecks. As the ratio comes to 50%:50%,
Pyxis’s throughput stops increasing when C:S goes beyond 16:1,
since the two tasks are now even and the storage is saturated
earlier. For the ratio of 80%:20%, there is no significant gain
in throughput when more compute nodes are added, because
the storage becomes the bottleneck. However, the throughput
of Kayak does not scale with more compute nodes for all three
settings, because the storage is always its bottleneck. The gap
between Pyxis and the upper bound is consistently within 6%.

Multiple tasks in the workload. we select 4 to 16 tasks from
Fig. 6 to evaluate the performance of Pyxis under multiple tasks.
As shown in Fig. 11, Pyxis improves Kayak by at least 3×, and
is close to the upper bound. The gap between Pyxis and Kayak+
increases with the number of tasks. Similar to Fig. 10, this is
because Kayak+ cannot accurately and stably converge to the
optimal solution, especially for �x of high dimensions.

C. Realistic Application

We implement an application workload to further validate the
effectiveness of Pyxis. The data model of the workload is a social
graph like Facebook TAO [56], where each vertex is associated
with several vector attributes (e.g., features of human faces
produced by deep learning models) and some scalar attributes.
This workload exemplifies emerging AI applications [57], [58],
[59] and hybrid queries over both vector and scalar data [60],
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TABLE III
SATURATED THROUGHPUT OF KAYAK, PYXIS AND UPPER BOUND UNDER DIFFERENT SETTINGS

Fig. 11. Performance under different number of tasks.

Fig. 12. Performance of a realistic application workload with four tasks.

[61], [62], [63], [64]. Specifically, the data store contains four
tables, namely vector, association (edges in the graph), scalar,
and authentication (cryptographic hash). Each table contains
100,000 entries We implement four tasks (Table II) as follows.
� The vector aggregation (aggr-V) task computes the statis-

tics of an entry in the vector table, where each entry
contains 64 256-dimensional vectors of 4B float values.

� The top-k task computes the nearest neighbors of a vertex.
It has three stages: (i) it fetches the keys of neighbors from
the association table; (ii) it accesses the vector table to
get a number of vector attributes for the given vertex and
all of its neighbors; (iii) it computes a score for every
neighbor (e.g., using vector distance) and returns the keys
of top-k neighbors with the highest scores. Each entry in
the association table contains 12 keys.

� The scalar aggregation (aggr-S) task is the scalar ver-
sion of the vector aggregation task. It accesses the scalar
table where each entry is an array of 256 4B float
values.

� The authentication (auth) task verifies user identity us-
ing scrypt [65]. Our implementation is similar to that in

ASFP [23]. Each entry in the authentication table contains
a 40B salted hash. This task receives a user ID and an en-
crypted password. It applies salted hashing to the password,
and compares the result with the stored hash.

We fix the fraction of authentication tasks to 10% and explore
four settings where the rest three tasks have equal fractions or one
task dominates with the largest fraction. Similar to our results
in Section VI-B, Pyxis outperforms the baselines and is close
to the upper bound. As shown in Fig. 12, Pyxis improves the
throughput by 3–4× over Kayak in all settings.

D. Scalability

We vary the number of storage nodes from one to eight and
the number of compute nodes from 4 to 48. The workload is
a 50%:50% mix of the two polarized tasks as it imposes a
considerable load on both compute and storage. Fig. 13 shows
the saturated throughput of Pyxis under different configurations.
Pyxis’s throughput increases with additional resources on both
sides. The storage becomes the bottleneck when there is only one
storage node and more than eight compute nodes. Otherwise,
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Fig. 13. Scalability.

Fig. 14. Elastic scaling of compute nodes.

given enough storage nodes, Pyxis’s throughput scales linearly
with the number of compute nodes.

E. Elasticity

Pyxis dynamically adjusts the number of workers on compute
nodes according to real-time demand. We use the two polarized
tasks and set the initial demand as a quarter of the maximum
throughput when 16 compute nodes (128 cores) are deployed.
We increase the demand by another quarter for every five sec-
onds. Fig. 14 shows the dynamics of throughput, latency and the
number of CPU cores on compute nodes. At the start, the system
is provisioned with one storage node and eight compute nodes
(64 cores). However, 32 cores would be sufficient for the initial
demand, and Pyxis reduces resource consumption accordingly.
When the demand increases later, Pyxis quickly responds by
adding more cores to the system. Pyxis achieves elasticity at
sub-second time scale and has negligible impact on latency.

F. Handling Load Skew

Pyxis handles load skew by isolating hotspots in separate
placement groups (Section IV-E). We use four storage nodes and
up to eight compute nodes. The workload has four tasks: the first
task only accesses the first storage node, the second task accesses
the first two storage nodes, etc. Therefore, the load on the four
storage nodes is of descending order. We vary the number of
placement groups from one to four. Fig. 15(a) shows that the
throughput increases with the granularity of groups. With more
groups, Pyxis can make better estimation of the skewed load in
the cluster. It aggressively uses higher values of α on storage

Fig. 15. Impact of the number of placement groups.

Fig. 16. Dynamics of α under different parameters.

nodes with low load, so that tasks may benefit from storage-side
computation, as shown in Fig. 15(b).

G. Sensitivity Analysis

Initial state. We first evaluate Pyxis’s sensitivity to its initial
state. We use the two polarized tasks with equal fractions and
vary the initial α from 0% to 100%. Fig. 16(a) shows that Pyxis
has sub-second convergence regardless of its initial state, which
confirms our analysis in Theorem 4.2.

Choice of M . Recall that Algorithm 1 equally divides [α, α]
into M segments and reduces the search space by M/2 for each
iteration. Intuitively, larger M reduces the number of iterations
but increases the number of steps in each iteration. To evaluate its
impact, we vary M from 3 to 9 and start from α = 0. As shown
in Fig. 16(b), M = 5 achieves the best convergence speed, as it
strikes a good balance between the number of iterations and the
number of steps. Other choices of M is only slightly slower in
convergence. Pyxis is not sensitive to this parameter in general.

VII. DISCUSSION

Cost model. The runtime costs ci, si present two major limita-
tions. First, they are end-to-end costs, which does not account for
different access patterns (e.g., one bulk read versus many small
reads). We can use heuristics to incorporate pattern information,
e.g. inflate the end-to-end cost by some factor according to
the size/number of data accesses. Second, Pyxis averages ci, si
across instances of the same task. The average is representative
of task characteristics for most cases, but may fail to cover some
outliers due to intra-task variations, e.g., the dispersion in data
size. This problem resembles information-agnostic scheduling
with unknown task durations, where the task duration is un-
known [66]. We can apply ideas like Least-Attained Service
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(LAS) [47] to adaptively re-schedule tasks between compute
and storage nodes. Alternatively, Pyxis can make better cost
estimation given additional hints about task execution, like SQL
query optimizers [67], [68]. It is an interesting direction for
future work.
ci and si represents a single resource each. To consider

multiple resources, however, would escalate the problem to
multi-dimensional bin packing [69], which is APX-hard [70].
Several heuristics [41], [71] have been proposed by the resource
scheduling literature, and the basic idea is to collapse the cost
vector into a scalar by taking a weighted sum. Pyxis can use
theses heuristics to compute ci, si, and its control logic is still
applicable.

Profiling. The “all-or-nothing” scheduling disables the profil-
ing of either ci or si after the initial stage. However, the runtime
costs may change over time for dynamic tasks. We can set a
time-to-live (TTL) field for each task and re-profile periodically.
Moreover, it is reasonable to assume that changes in a task would
affect both ci and si, which could be detected by mechanisms
in Section V.

Optimization objective. Pyxis aims to maximize overall
throughput R under SLO constraints. Under low demand it
does not optimize latency as long as the SLOs are satisfied.
In that case, however, more aggressively splitting tasks between
compute/storage nodes could furthur improve response times.
We can switch to another scheduling policy under low demand,
e.g., group/split tasks with existing heuristics [41].

In practice, tasks may have different importance, and we
can extend the original objective R by associating a weight wi

with task-i. The objective becomes R
∑

i piwi, where pi is the
fraction of task-i. Note that setting wi = 1 gives the original
objective, and both aim to maximize R, so the analysis and
algorithm in Section IV are still applicable. We assume that
pi is stable (in a period of time), since it usually takes a fixed
combination of tasks to compose an application.

Multi-shard tasks. In Section IV, we assume for simplicity
that a task targets a single data shard such that it accesses local
data only once scheduled to storage nodes. In practice, a task
may access multiple shards and cannot be factored into smaller
single-sharded pieces. Pyxis can be extended to support such
tasks in the following way. When scheduling a task to execute
on storage nodes, the Pyxis scheduler effectively chooses one
that can provide the most hit, i.e., max coverage of the task’s
read/write set. In case of a partial hit, missing data can be fetched
from other storage nodes. Having to wait for remote data to
arrive could increase the CPU consumption of a task on storage
nodes, making it less favorable for storage-side computation, as
reflected by its relative ranking of si/ci.

Inter-task dependencies. One limitation of Pyxis is that it does
not consider inter-task dependencies. Ideally if a downstream
task consumes the output of an upstream task, then they should
be collocated on the same node for fast local data passing.
However, many existing works have explored bundling multiple
tightly coupled workflow stages in a DAG (e.g., those involving
huge data transfers) into a single group, and scheduling the DAG
at the granularity of groups [72], [73], [74]. Pyxis can be layered
on top of such grouping mechanisms, such that inter-group
dependencies are weak and eligible for independent placement.

Scalability. Pyxis is horizontally scalable (Section VI-D),
as its disaggregated architecture allows independent scaling of
compute and storage pools. Pyxis’s control loop is typically
not the bottleneck, because it is off the critical path of request
handling. In fact, Pyxis can be integrated in Layer 7 load
balancers. It only needs to observe the throughput and latency
during the past time window and periodically updates the split
ratios, which allows it to run asynchronously. To increase the
throughput for large clusters, one can simply add more load bal-
ancers. Thanks to the sub-second convergence (Section VI-A)
of Pyxis, there is typically no need to persist the state of the
scheduler.

Multi-tenancy. Pyxis is built on top of the multi-tenant data
store Splinter [18], which support fairness and performance iso-
lation by pinning tenants to CPU cores. Pyxis can reuse existing
mechanisms for multi-tenancy, and the problem is orthogonal to
this paper. Given a resource allocation scheme, Pyxis is able to
make optimal scheduling decisions.

VIII. RELATED WORK

Disaggregated storage. Fast kernel-bypass networking based
on DPDK and RDMA enables high throughput and low la-
tency [75], [76], [77], [78], [79] for storage systems. As a result,
disaggregating compute from storage has become the paradigm
for building applications in the cloud [11], [12], [13], [14], [80].
Pyxis adheres to the concept of resource disaggregation and
focuses on task scheduling to improve system performance.

Storage-side computation. Pushing computation to storage is
a common practice in database systems, such as SQL stored pro-
cedures [43], [44], [45] and user-defined functions (UDFs) [81],
[82], [83]. Many cloud data warehouses are SQL-aware [11],
[16] or optimized for in-place analytical processing [17]. A
recent line of research considers pushing more fine-grained com-
putation to storage using custom user-defined extensions [18],
[84], [85], [86]. Pyxis is based on the exposed compute capa-
bility on storage and optimizes scheduling decisions for better
utilization.

Task scheduling in disaggregated datacenters. Recent trend
on resource disaggregation inspires several studies on workload-
aware scheduling [22], [23], [87], [88]. ASFP [23] adopts a
reactive approach that first schedules all tasks to storage and
then pushes some of them to compute nodes when overloaded.
Kayak [22] improve ASFP by proactively finding the split ratio.
However, Kayak is designed for homogeneous tasks and cannot
directly extend to mixed workloads. Pyxis addresses the multi-
task problem by reducing the solution space to a single turning
point.

Stateful Serverless Computing. The disaggregation between
compute and storage also lies in the foundation of serverless
computing. Provisioning separate compute and storage pools
for stateless functions and storage services respectively enables
the hallmark feature of fine-grained autoscaling and pay-per-use
billing in serverless. However, stateful serverless functions that
involve many data accesses are faced with the same problem as
IO-intensive tasks in Pyxis. Several studies focus on optimizing
state sharing or data passing between stateful functions [33],
[89], [90], [91], [92], [93]. Cloudburst colocates a mutable cache
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with functions for fast state accesses [35]. Faa$t proposes to
place a pre-warmed autoscaling cache alongside each func-
tion [94]. Locus judiciously provisions fast in-memory storage
or slow but cheap disk-based servers for efficient serverless
analytics [95]. Pyxis adopts a similar setting as Locus where the
cluster contains disaggregated remote storage (or cache) servers,
and allows in-storage data processing by selectively scheduling
a subset of tasks to storage.

IX. CONCLUSION

We present Pyxis, a system that provides optimal schedul-
ing decisions for mixed workloads in disaggregated datacen-
ters. Pyxis maximizes overall throughput while meeting latency
SLOs. Our key insight is that the optimal solution has an “all-
or-nothing” structure with a single turning point, which greatly
simplifies the solution space. We propose an online algorithm
that finds the turning point efficiently, and provide theoretical
guarantees for its convergence. Our system prototype supports
scalability and elasticity. Extensive experiments show that Pyxis
achieves sub-second convergence and improves overall through-
put by 3–21× over the state-of-the-art solution.
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[8] W. Reda, M. Canini, D. Kostić, and S. Peter, “{RDMA} is turing complete,
we just did not know it yet!,” in Proc. 19th USENIX Symp. Netw. Syst. Des.
Implementation, 2022, pp. 71–85.

[9] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the perfor-
mance limits of datacenter networks,” in Proc. 19th USENIX Symp. Netw.
Syst. Des. Implementation, 2022, pp. 51–70.

[10] Q. Cai, M. T. Arashloo, and R. Agarwal, “dcPIM: Near-optimal proac-
tive datacenter transport,” in Proc. ACM SIGCOMM Conf., 2022,
pp. 53–65.

[11] “Amazon simple storage service (S3).” Accessed: Jun. 14, 2024. [Online].
Available: https://aws.amazon.com/s3/

[12] “Microsoft azure blob storage.” Accessed: Jun. 14, 2024. [Online]. Avail-
able: https://azure.microsoft.com/services/storage/blobs/

[13] “Google cloud storage.” Accessed: Jun. 14, 2024. [Online]. Available:
https://cloud.google.com/storage

[14] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and T.
Cruanes, “Building an elastic query engine on disaggregated storage,”
in Proc. 17th USENIX Symp. Netw. Syst. Des. Implementation, 2020,
pp. 449–462.

[15] “Amazon S3 select command.” Accessed: Jun. 14, 2024. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-
glacier-select-sql-reference-select.html

[16] “Amazon redshift.” Accessed: Jun. 14, 2024. [Online]. Available: https:
//aws.amazon.com/redshift/

[17] “Aqua (advanced query accelerator) for amazon redshift.” Accessed: Jun.
14, 2024. [Online]. Available: https://aws.amazon.com/redshift/features/
aqua/

[18] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci, and R. Stutsman,
“Splinter: Bare-metal extensions for multi-tenant low-latency storage,” in
Proc. 13th USENIX Symp. Operating Syst. Des. Implementation, 2018,
pp. 627–643.

[19] D. Kim et al., “Hyperloop: Group-based NIC-offloading to accelerate
replicated transactions in multi-tenant storage systems,” in Proc. ACM
SIGCOMM Conf., 2018, pp. 297–312.

[20] Y. Zhong et al., “BPF for storage: An exokernel-inspired approach,” in
Proc. Workshop Hot Topics Operating Syst., 2021, pp. 128–135.

[21] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter {RPCs} can be
general and fast,” in Proc. 16th USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2019, pp. 1–16.

[22] J. You, J. Wu, X. Jin, and M. Chowdhury, “Ship compute or ship data? why
not both?,” in Proc. 18th USENIX Symp. Netw. Syst. Des. Implementation,
2021, pp. 633–651.

[23] A. Bhardwaj, C. Kulkarni, and R. Stutsman, “Adaptive placement for in-
memory storage functions,” in Proc. USENIX Annu. Tech. Conf., 2020,
pp. 127–141.

[24] “Cloudlab.” Accessed: Jun. 14, 2024. [Online]. Available: https://cloudlab.
us/

[25] “Decomposing Twitter: Adventures in service-oriented architecture.”
Accessed: Jun. 14, 2024. [Online]. Available: https://www.infoq.com/
presentations/twitter-soa/

[26] H. Zhou et al., “Overload control for scaling wechat microservices,” in
Proc. ACM Symp. Cloud Comput., 2018, pp. 149–161.

[27] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan:
ML-based and QoS-aware resource management for cloud microservices,”
in Proc. 26th ACM Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2021, pp. 167–181.

[28] “AWS lambda.” Accessed: Jun. 14, 2024. [Online]. Available: https://aws.
amazon.com/lambda/

[29] “Knative.” Accessed: Jun. 14, 2024. [Online]. Available: https://knative.
dev/docs/

[30] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with Open-
Lambda,” in Proc. 8th USENIX Workshop Hot Topics Cloud Comput.,
2016, pp. 33–39.

[31] S. Qi, L. Monis, Z. Zeng, I.-C. Wang, and K. Ramakrishnan, “SPRIGHT:
Extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proc. ACM SIG-
COMM Conf., 2022, pp. 780–794.

[32] “Azure functions.” Accessed: Jun. 14, 2024. [Online]. Available: https:
//azure.microsoft.com/en-us/products/functions

[33] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis,
“Pocket: Elastic ephemeral storage for serverless analytics,” in Proc. 13th
USENIX Symp. Operating Syst. Des. Implementation, 2018, pp. 427–444.

[34] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica, “Jiffy:
Elastic far-memory for stateful serverless analytics,” in Proc. 17th Eur.
Conf. Comput. Syst., 2022, pp. 697–713.

[35] V. Sreekanti et al., “Cloudburst: Stateful functions-as-a-service,” Proc.
VLDB Endowment, vol. 13, no. 12, pp. 2438–2452, 2020.

[36] S. Qi, X. Liu, and X. Jin, “Halfmoon: Log-optimal fault-tolerant stateful
serverless computing,” in Proc. 29th Symp. Operating Syst. Princ., 2023,
pp. 314–330.

[37] “Functionbench.” Accessed: Jun. 14, 2024. [Online]. Available: https://
github.com/kmu-bigdata/serverless-faas-workbench

[38] “Serverlessbench.” Accessed: Jun. 14, 2024. [Online]. Available: https:
//serverlessbench.systems/en-us/

[39] “Serverless examples,” Accessed: Jun. 14, 2024. [Online]. Available: https:
//github.com/serverless/examples

[40] “Deathstarbench.” Accessed: Jun. 14, 2024. [Online]. Available: https:
//github.com/delimitrou/DeathStarBench/

[41] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. ACM SIGCOMM
Conf., 2014, pp. 455–466.

[42] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “GRAPHENE:
Packing and dependency-aware scheduling for data-parallel clusters,” in
Proc. 13th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 81–97.

[43] “Microsoft SQL server stored procedures.” Accessed: Jun. 14, 2024.
[Online]. Available: https://docs.microsoft.com/en-us/sql/relational-
databases/stored-procedures/stored-procedures-database-engine/

Authorized licensed use limited to: Peking University. Downloaded on July 18,2024 at 08:35:15 UTC from IEEE Xplore.  Restrictions apply. 

https://aws.amazon.com/s3/
https://azure.microsoft.com/services/storage/blobs/
https://cloud.google.com/storage
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-glacier-select-sql-reference-select.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-glacier-select-sql-reference-select.html
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/features/aqua/
https://aws.amazon.com/redshift/features/aqua/
https://cloudlab.us/
https://cloudlab.us/
https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://knative.dev/docs/
https://knative.dev/docs/
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/kmu-bigdata/serverless-faas-workbench
https://serverlessbench.systems/en-us/
https://serverlessbench.systems/en-us/
https://github.com/serverless/examples
https://github.com/serverless/examples
https://github.com/delimitrou/DeathStarBench/
https://github.com/delimitrou/DeathStarBench/
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine/
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine/


QI et al.: PYXIS: SCHEDULING MIXED TASKS IN DISAGGREGATED DATACENTERS 1549

[44] “MySQL stored procedures tutorial.” Accessed: Jun. 14, 2024. [On-
line]. Available: https://www.mysqltutorial.org/mysql-stored-procedure-
tutorial.aspx/

[45] “Oracle PL/SQL.” Accessed: Jun. 14, 2024. [Online]. Available: https:
//www.oracle.com/database/technologies/application-development-
PL/SQL.html/

[46] C. Bah–Ming and J. Raj, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Comput. Netw. ISDN
Syst., vol. 1, 1939, Art. no. 1414.

[47] L. Kleinrock, Queuing Systems, Volume II: Computer Applications. Wiley,
1976.

[48] T. J. Ott, “The sojourn-time distribution in the M/G/1 queue by processor
sharing,” J. Appl. Probability, vol. 21, no. 2, pp. 360–378, 1984.

[49] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: Ni-driven tail-aware
balancing of μs-scale RPCs,” in Proc. 24th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2019, pp. 35–48.

[50] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving low tail latency
for microsecond-scale networked tasks,” in Proc. 26th Symp. Operating
Syst. Princ., 2017, pp. 325–341.

[51] “Pyxis: Scheduling mixed tasks in disaggregated datacenters (appendix).”
Accessed: Jun. 14, 2024. [Online]. Available: https://tomquartz.github.io/
files/TPDS24_Pyxis_appendix.pdf

[52] M. Doraghinejad, H. Nezamabadi-pour, A. H. Sadeghian, and M. Magh-
foori, “A hybrid algorithm based on gravitational search algorithm for
unimodal optimization,” in Proc. 2nd Int. eConf. Comput. Knowl. Eng.,
2012, pp. 129–132.

[53] V. Kumar, J. K. Chhabra, and D. Kumar, “Parameter adaptive harmony
search algorithm for unimodal and multimodal optimization problems,” J.
Comput. Sci., vol. 5, no. 2, pp. 144–155, 2014.

[54] F. Merrikh-Bayat, “The runner-root algorithm: A metaheuristic for solving
unimodal and multimodal optimization problems inspired by runners and
roots of plants in nature,” Appl. Soft Comput., vol. 33, pp. 292–303, 2015.

[55] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cam-
bridge, U.K.: Cambridge Univ. Press, 2004.

[56] N. Bronson et al., “{TAO }:{ Facebook’s} distributed data store for the
social graph,” in Proc. USENIX Annu. Tech. Conf., 2013, pp. 49–60.

[57] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale datasets
of deep descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 2055–2063.

[58] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proc. 10th ACM Conf. Recommender Syst., 2016,
pp. 191–198.

[59] M. Grbovic and H. Cheng, “Real-time personalization using embeddings
for search ranking at airbnb,” in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2018, pp. 311–320.

[60] J. Wang et al., “Milvus: A purpose-built vector data management system,”
in Proc. Int. Conf. Manage. Data, 2021, pp. 2614–2627.

[61] C. Wei et al., “AnalyticDB-V: A hybrid analytical engine towards query
fusion for structured and unstructured data,” Proc. VLDB Endowment,
vol. 13, no. 12, pp. 3152–3165, 2020.

[62] W. Yang, T. Li, G. Fang, and H. Wei, “PASE: PostgreSQL ultra-high-
dimensional approximate nearest neighbor search extension,” in Proc.
ACM SIGMOD Int Conf. Manage. Data, 2020, pp. 2241–2253.

[63] J. Li et al., “The design and implementation of a real time visual search
system on JD E-commerce platform,” in Proc. 19th Int. Middleware Conf.
Ind., 2018, pp. 9–16.

[64] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
GPUs,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, Jul. 2021.

[65] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions.” Accessed: Jun. 14, 2024. [Online]. Available: http://www.tarsnap.
com/scrypt/scrypt.pdf

[66] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “{Information-
Agnostic} flow scheduling for commodity data centers,” in Proc. 12th
USENIX Symp. Netw. Syst. Des. Implementation, 2015, pp. 455–468.

[67] “PostgreSQL: Documentation: 14: 51.5. planner/optimizer.” Accessed:
Jun. 14, 2024. [Online]. Available: https://www.postgresql.org/docs/
current/planner-optimizer.html

[68] M. Armbrust et al., “Spark SQL: Relational data processing in spark,” in
Proc. Int. Conf. Manage. Data, 2015, pp. 1383–1394.

[69] Y. Azar, I. R. Cohen, S. Kamara, and B. Shepherd, “Tight bounds for online
vector bin packing,” in Proc. 45th Annu. ACM Symp. Theory Comput.,
2013, pp. 961–970.

[70] G. J. Woeginger, “There is no asymptotic ptas for two-dimensional vector
packing,” Inf. Process. Lett., vol. 64, no. 6, pp. 293–297, 1997.

[71] “Heuristics for vector bin packing.” Accessed: Jun. 14, 2024. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
heuristics-for-vector-bin-packing/

[72] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S.
Bagchi, “ORION and the three rights: Sizing, bundling, and prewarming
for serverless DAGs,” in Proc. 16th USENIX Symp. Operating Syst. Des.
Impl., 2022, pp. 303–320.

[73] A. Mahgoub et al., “Wisefuse: Workload characterization and dag transfor-
mation for serverless workflows,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 6, no. 2, pp. 26:1–26:28, 2022.

[74] C. Jin et al., “Ditto: Efficient serverless analytics with elastic parallelism,”
in Proc. ACM SIGCOMM Conf., 2023, pp. 406–419.
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