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Abstract—Workflow processing enhances the applicability of
serverless computing while retaining the characteristics of fine-
grained resource management and elastic scalability. However,
current serverless platforms lack targeted optimization of place-
ment and routing strategies for workflow processing, leading to
high overheads due to inter-server data transmission, instance
cold starts, and function request queuing. We propose FaaSPR,
a serverless scheduling system that exploits placement and
routing optimizations to minimize workflow processing latency.
FaaSPR groups instances with potential data transmission and
proportionally distributes groups with heterogeneous instances
across multiple servers, taking into account resource constraints
and historical placement traces. This method addresses the issues
of poor scalability and frequent instance migrations in existing
solutions. Utilizing a routing algorithm based on multi-stage
linear programming, FaaSPR minimizes cross-server data trans-
mission within and between instance groups while ensuring load
balancing among instances. Experiments show that, compared
to the state-of-the-art solution FaaSFlow, FaaSPR decreases the
average and 99th percentile tail latency by up to 68.03% and
93.46%, respectively. Additionally, reducing workflow processing
latency leads to up to 46.18% decrease in resource consumption
for FaaS users.

Index Terms—Serverless, scheduling, placement and routing.

I. INTRODUCTION

SERVERLESS computing is widely supported by major
cloud platforms [1], [2], [3]. In serverless scenarios,

developers build applications with lightweight and stateless
functions, while serverless platforms deploy and scale out the
function instances based on user traffic, liberating developers
from the maintenance and management of cloud resources and
function runtimes. Many serverless applications, such as video
processing [4], data analytics [5], and machine learning [6],
involve serverless function workflows [7], [8], [9], [10], [11]
for enhanced applicability. A serverless workflow comprises a
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set of functions organized as a directed acyclic graph (DAG)
based on data dependencies. With the collaborative orchestra-
tion of multiple functions, the serverless workflow supports
complex functionalities while maintaining independent elastic
scalability for each function.

Despite being convenient and efficient, serverless work-
flows processing faces significant overhead from three aspects.
Firstly, data dependencies between functions result in trans-
mission overhead. The performance of different transmission
solutions varies greatly [12], [13]. Data transmission within the
same server occurs in shared memory with negligible latency,
but cross-server transfers through remote storage (e.g., AWS
S3 [14] and Azure Blob [15]) has significant delays [16], [17].
Second, the lightweight nature of serverless functions leads to
significant cold start overhead compared to warm starts [18],
and this overhead accumulates across the workflow, amplifying
its impact. Finally, the uneven load among instances when
handling invocations will result in high queuing time for
function requests, thus slowing down the response for user
invocations. Our measurements show these factors contribute
73.91%∼80.84% of total workflow processing time, consistent
with previous studies [17], [19].

In serverless workflow scheduling, the placement and rout-
ing strategy determines the placement of instances within the
cluster (placement) and the execution location of each function
in the workflow (routing), directly impacting workflow pro-
cessing overhead. However, effective solutions for this issue
are currently lacking. Although some studies claim to optimize
the placement and routing problem in serverless workflows
[17], [20], [21], they lack a comprehensive consideration of
serverless performance factors such as high concurrency, high
elasticity, limited bandwidth, and cold start overhead, resulting
in performance issues. As the state-of-the-art solution, FaaS-
Flow [17] groups and centralized places function instances
with data dependencies to facilitate local data transmission.
However, this grouping algorithm is unsuitable for high-
concurrency serverless scenarios, as the size of the groups
will easily exceed the hardware resource limits of a single
server. Additionally, the group placement strategy of FaaSFlow
overlooks instance migration, leading to frequent cold start and
high overhead.

In this paper, we propose FaaSPR, a serverless workflow
scheduler to optimize the placement and routing strategies
and minimize workflow processing latency. Generating effi-
cient placement and routing strategies is not trivial. The first
challenge is the huge search space caused by the diversity
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of function instances and the high concurrency of serverless
environments. Each function in a serverless workflow differs
in execution duration, cold start overhead, data transmission
volume, and resource requirements, presenting numerous con-
siderations and constraints for the placement and routing
strategies. Additionally, the high concurrency characteristic
requires the scheduler to deploy multiple instances for a single
function, and the routing algorithm needs to select a unique
instance for each function in every workflow processing,
further expanding the search space.

Secondly, the average and tail latencies of workflow pro-
cessing must be comprehensively optimized. Existing works
focused on average latency optimization instead of tail latency
[17], [20], [21]. However, for workflows handling real-time
requests, tail latency is crucial for user experience. Previous
optimizing methods target for either the average value of a
single variable (e.g., latency) [17], [20] or the average values
of two objective variables (e.g., latency and cost) in a fixed
ratio [21], which is unsuitable for average and tail latency.
FaaSPR must further explore the characteristics of instance
placement and function execution to avoid corner cases and
excessive tail latency.

To address the two challenges, FaaSPR designs a placement
and routing strategy generation algorithm based on the core
insight of dispersed grouping. Regarding placement strategy,
FaaSPR first groups instances serving the same function and
further merges them based on data transmission overhead. The
merged instance groups are proportionally distributed across
multiple servers, with each server capable of handling all
functions within the group. The dispersing placement method
alleviates the constraints of grouping scale imposed by server
resource capacity, allowing data transmission to be executed
locally whenever possible. When determining the placement of
instance groups, FaaSPR considers both the resource require-
ments of the instances and their historical placement to avoid
unnecessary instance migrations, thereby reducing cold start
overhead.

As a complement to the placement strategy, FaaSPR
employs a multi-stage linear programming (LP)-based routing
algorithm to simultaneously optimize both the average and
tail workflow processing latencies. Since instance placement
imbalance is inevitable under cloud platforms with com-
plex resource constraints, the routing algorithm maximizes
local data transmission while aligning traffic distribution with
instance placement, avoiding function request queuing caused
by traffic skew. Given the instance placement and real-time
user traffic, FaaSPR approximates the theoretical optimal
workflow tail latency through multi-stage LP solutions and
optimizes the average processing latency with a given tail
latency. With optimizations to the algorithm complexity, the
routing strategy generation can be completed within millisec-
onds, maintaining good scalability.

We implement a prototype of FaaSPR and evaluate its
performance under various serverless workflow applications.
Experimental results show that, compared to the state-of-the-
art solution FaaSFlow, FaaSPR reduces average and 99th tail
latencies by up to 68.03% and 93.46%, respectively. Due
to the pay-as-you-go nature of serverless computing [22],

Fig. 1. Serverless workflow processing architecture.

optimizing data transmission overhead reduces function exe-
cution time and resource usage, resulting in up to 46.18%
resource consumption decrease for users.

In summary, we make the following contributions.
• We present FaaSPR, a serverless workflow scheduler that

minimizes workflow processing latency.
• We propose an instance placement algorithm that max-

imizes local data transmission based on a horizontal
and vertical grouping algorithm and minimizes instance
migration to avoid cold start overhead.

• We design a multi-stage LP-based routing optimization
algorithm to jointly optimize the average and tail latencies
of serverless workflow processing.

• We implement a prototype of FaaSPR. Experiments show
that FaaSPR reduces the average and tail latency of
workflow processing by up to 68.03% and 93.46%,
respectively, compared to the state-of-the-art solution
FaaSFlow. The reduction in processing latency also brings
up to 46.18% resource consumption savings for users.

II. BACKGROUND AND MOTIVATION

This section first provides an overview of serverless work-
flow processing. Then, we present the optimization potential of
placement and routing strategies in serverless workflow, which
motivates our design.

A. Serverless Workflow Processing

Workflow processing is widely supported by existing server-
less frameworks like AWS Step Functions [7], Azure Logic
Apps [8], and Google Cloud Workflow [9]. Figure 1 illustrates
the general architecture of serverless workflow processing,
including workflow metadata storage, serverless platform man-
ager, and worker cluster. The user-defined workflow metadata
comprises the execution logic and data dependencies among
all functions ( 1©). For each function, one or more corre-
sponding instances (generally virtual machines or containers)
are deployed within the cluster to handle function requests
( 2©). The serverless manager translates user requests into
multiple function requests based on the workflow metadata and
sends them to target instances ( 3©). During execution, func-
tions with data dependencies exchange data through remote
storage services, e.g., AWS S3 [14] and Azure Blob [15].
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The network resources available to instances are typically
limited and determined by the memory and compute resources
[23], [24]. Therefore, intermediate data transmission through
remote storage incurs additional overhead, especially for data-
intensive workflows. Recent work allows functions executed
on the same server to transfer data via shared memory [17],
thus avoiding the transmission overhead. ( 4©)

Scaling. When processing workflows, the serverless man-
ager monitors the concurrency of each function and adjusts the
deployment quantity of the corresponding instances accord-
ingly, known as scaling ( 5©). The formula for calculating
concurrency is (average function requests per second) ×
(average function processing duration) [25]. The detection
granularity of concurrency is typically one minute, which
is also the minimum scaling interval for common serverless
platforms [26], [27]. The scaling quantity for different func-
tions within the same workflow may vary due to differences
in execution duration. Serverless platforms generally deploy
more instances than concurrency to ensure timely response to
function requests [28], [29].

B. Motivation

Placement and routing strategies significantly influence the
performance of serverless workflow processing. However,
current serverless platforms lack corresponding support. The
mainstream view holds that placing instances of the same
workflow together can reduce communication latency [17],
[20], [30], [31], [32]. However, in high-concurrency scenarios,
the number of instances serving the same workflow far exceeds
the resource limitations of a single server, making centralized
placement unfeasible. Additionally, the scale of instances in
serverless platforms is proportional to user traffic. Maintaining
centralized deployment of instance groups in highly elastic
scenarios can lead to unnecessary frequent instance migrations,
resulting in additional cold start overhead.

Another issue with placement strategies is the lack of
coordination with routing. Current cloud platform routing
strategies focus on load balancing for individual functions
without considering the workflow structure or instance place-
ment. This prevents routing strategies from fully utilizing
the potential of local transmission, leading to uneven load
distribution among instances and causing function request
queuing. Achieving optimized coordination between place-
ment and routing strategies is not trivial. We demonstrate
the performance limitations of two straightforward routing
strategies in Figure 2. In this figure, instances marked with
zigzag lines and dots, which have data dependencies, are
deployed on servers A and B. Figure 2a illustrates the random
routing strategy, where instances marked with dots randomly
select a zigzag-line instance as their successor. The problem
with random routing is evident as it causes unnecessary inter-
server data transmission. However, simply maximizing local
transmission results in overcorrection. As shown in Figure 2b,
relying solely on local transmission leads to an imbalance in
instance load across servers. The zigzag-line instance on server
B receives many more requests than its load capacity, resulting
in severe queuing delays.

Fig. 2. Latency overhead caused by suboptimal routing strategies, where
the solidity of arrows indicates the mode of data transmission (as illustrated
in Figure 1), and the thickness represents the amount of transmitted data.
(a) Random routing. (b) Local-first routing.

Fig. 3. Detailed time consumption of serverless workflow processing with
state-of-the-art placement and routing strategies. (a) Consumption of all user
requests. (b) Consumption of requests with 99th tail latency.

Figure 3 illustrates the detailed time consumption of server-
less workflow processing under FaaSFlow (experimental setup
details in § VII-A). It can be observed that the overhead
from data transmission, cold start, and function request
queuing accounts for 22.92%∼37.67%, 1.30%∼8.18%, and
34.94%∼49.90% of the average processing time, respectively.
The total overhead accounts for 73.91%∼80.84% of the work-
flow processing time. The impact on tail latency is even more
severe, with all extra overheads occupying 84.49%∼88.42%
of the processing time. Moreover, the influence of cold start
overhead on tail latency is significantly heightened, taking up
5.63%∼27.20% of the processing time. This result demon-
strates the significant optimization potential of placement and
routing strategies in serverless workflow processing.

III. FAASPR OVERVIEW

Figure 4 illustrates the overall architecture of FaaSPR,
which consists of a placement strategy generator and a routing
scheduler. The placement strategy generator receives scaling
requests from the serverless platform and determines the
deployment location of each instance. It employs a horizontal
and vertical grouping algorithm to reduce data transmission
during workflow processing and avoid instance migration
during scaling. The placement decisions are also sent to
the routing scheduler, which uses a multi-stage LP-based
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Fig. 4. FaaSPR overview.

algorithm to calculate the execution location for each function
in the workflow, thereby achieving load balancing for user
requests among instances while minimizing cross-server data
transmission. We introduce three key techniques in FaaSPR:
horizontal and vertical grouping, migration minimizing plac-
ing, and multi-stage LP-based routing optimizing.

Horizontal and Vertical Grouping. FaaSPR employs
the horizontal and vertical grouping algorithm to reduce
inter-server data transmission during workflow processing.
Vertically, FaaSPR bundles function instances with data depen-
dencies into instance groups. Horizontally, FaaSPR divides
vertical instance groups into smaller horizontal ones approxi-
mately evenly. As the most minor deployment units, horizontal
groups facilitate internal local data transmission and enables
flexible deployment without being limited by server resource
capacity.

Migration Minimizing Placing. FaaSPR decreases the
migration of serverless instances during the scaling process
(i.e., to avoid terminating an instance and starting an identical
one on another server) to minimize cold starts. When determin-
ing the deployment locations for a horizontal group, FaaSPR
calculates the placement priority for each server based on the
number of instances that need cold starts and the cold start
duration, thereby maximizing the reuse of existing function
instances and minimizing the cold start overhead.

Multi-stage LP-based Routing Optimizing. The ultimate
objective of the multi-stage LP-based routing algorithm is to
minimize the maximum processing duration of the workflow
and subsequently minimize the average latency. To generate
an optimal routing strategy, we consider various factors such
as data transmission overhead between different instances,
instance placement locations and quantities, and instance load
capacities. We leverage three optimizations to reduce the
algorithm execution time to the millisecond scale.

IV. FAASPR PLACEMENT

FaaSPR employs a horizontal and vertical grouping algo-
rithm to reduce inter-server data transmission and decrease
function instance migrations during scaling to reduce cold start
overhead. This section introduces the two techniques above
and provides the complete placement algorithm.

A. Horizontal and Vertical Grouping

Optimizing data transmission overhead by instance grouping
is widely adopted in serverless contexts [17], [20]. However,
the bundling placement of instance groups conflicts with the

Fig. 5. Horizontal and vertical grouping example. (a) Example workflow.
(b) Vertical grouping. (c) Horizontal and vertical grouping.

flexible resource management of serverless computing, thereby
limiting the effectiveness of optimization. We illustrate the
optimization limitation with an example and demonstrate how
FaaSPR optimizes placement strategies to unlock the potential
of local transmission. Mainstream serverless platforms require
the memory usage of instances to be proportional or approxi-
mately proportional to other resources (e.g., CPU and network)
[33], [34]. Therefore, we use memory as the representative
instance resource in this example.

Figure 5a shows a sequential workflow, where functions A,
B, and C interact with remote storage for data transmission.
Assume that the memory requirements of instances A, B, and
C are 1GB, 1GB, and 2GB, respectively. Each server has 8GB
of available memory. Figure 5b illustrates the placement strat-
egy of the state-of-the-art solution, FaaSFlow, which centrally
places function instances with data dependencies.

As shown in Figure 5b, the data transmission overhead
between functions A and B is eliminated. However, due to
the large memory footprint, function C cannot be deployed
together with others. This results in the inter-server data
transmission between B and C. Similar problems are prevalent
in real-world scenarios, where functions belonging to popular
applications often have dozens of instances [19]. Due to the
bundling resource allocation for instance groups, the grouping
scale is limited by server resource capacity. FaaSPR addresses
the limitation by grouping instances for both horizontal and
vertical dimensions. As shown in Figure 5c, FaaSPR first
consolidates the entire workflow vertically into a single group.
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Fig. 6. Control logic in serverless workflows. (a) Sequence. (b) Parallel.
(c) Switch. (d) Foreach.

Then, the vertical group is divided into two horizontal groups
and placed on separate servers. Consequently, the entire work-
flow processing can be completed on a single server without
involving remote storage.

Horizontal Grouping Rules. FaaSPR adopts an approx-
imate even horizontal partitioning algorithm including three
principles. (i) instances should be evenly distributed as
much as possible among horizontal groups. Evenly grouping
achieves approximate load capacities for different functions
within horizontal groups, reducing the potential function
request queuing caused by load capacity imbalances. (ii)
Any instance in a horizontal group should have sufficient
copies to avoid function request blocking caused by execution
errors. (iii) FaaSPR should divide the vertical groups into as
many horizontal subgroups as possible, which enables flexible
deployment and avoid constraints imposed by server resource
limitations.

Beyond the basic algorithm, FaaSPR employs targeted
grouping strategies for specific workflow control logic to
achieve more predictable performance. Figure 6 illustrates
common workflow control logics in serverless platforms,
including (i) sequence: each function has one predecessor and
one successor, and all functions are executed sequentially; (ii)
parallel: functions have multiple successors and they will exe-
cute simultaneously when dependencies are met; (iii) switch:
functions choose specific successors based on user input or
return values; and (iv) foreach: functions determine the number
of successors based on input data, where each successor
performs the same functionality but processes different inputs.

The horizontal grouping algorithm works well on sequence,
parallel, and switch structures. However, the foreach structure
involves concurrent function execution. When the instance
capacity of a horizontal group is insufficient to support the
parallel execution of all function requests, some of them
will queue or be transferred to other servers, resulting in
extra overhead. Additionally, the degree of concurrency of
the foreach nodes depends on user input rather than a fixed
value. Therefore, FaaSPR imposes additional constraints on
horizontal groups containing foreach nodes. It requires that
the instance numbers of foreach nodes within a horizontal
group cannot be less than their maximum concurrency in
the previous scaling interval. This ensures that the workflow

Algorithm 1 Horizontal and Vertical Grouping
Data: vertical grouping plan vG plan.

Input: workflow DAG Graph, function info f1, f2,...fn.
Output: instance placement strategy P.

1: vG plan← {{f1} , {f2} , . . . , {fn}}
2: merge flag ← True
3: while merge flag do
4: merge flag ← False
5: critical path← CriticalPath(Graph, vG plan)
6: critical edges← Edges(critical path)
7: list e← ReversedSort(critical edges)
8: for edge e in list e do
9: fa, fb ← From(e), T o(e)

10: vga, vgb ← vGroup(fa), vGroup(fb)
11: if vga = vgb then
12: continue
13: vG temp← vG plan− {vga, vgb}
14: vG temp← vG temp ∪ {Merge(vga, vgb)}
15: if GetP laceStrategy(vG temp) 6= −1 then
16: vG plan← vG temp
17: merge flag ← True, break
18: Return GetP laceStrategy(vG plan)
19: GetPlaceStrategy (vG)
20: for Pij in P do Pij ← 0
21: for vg in vG do
22: h num← min

({
f.num

HG limit for f ∈ vg
})

23: h num← min(h num, server num)
24: if ContainForeach(vg) then
25: h num← min(h num,ForeachLimit(vg))
26: hG← ApproximateDivide(vg, hg num)
27: for hg in hG do
28: for each server j do
29: priorityj ← GetPriority(j, hg)
30: if max(priority) < 0 then Return −1
31: j∗ ← ServerIndex(max(priority))
32: PlaceGroup(P, hg, j∗)
33: Return P

can be processed within a single horizontal group without
additional overhead.

Algorithm. FaaSPR updates the horizontal and vertical
grouping strategy each time the serverless platform sends a
scaling request. We show the key steps in Algorithm 1. The
workflow DAG in the algorithm is represented by Graph,
whose nodes f1, f2,...fn represent the functions. The weights
of DAG edges refer to the data transmission overhead between
functions. The transmission overhead is affected by instance
grouping. Inter-group transmission overhead is determined by
the data volume and bandwidth, while intra-group transmis-
sion overhead is ignored. Due to varying data processing
volumes in different workflow invocations, we calculate the
edge weights based on the average data size of the last
1000 invocations. The algorithm outputs a placement strategy
containing the deployment location for each instance.

First, FaaSPR initializes instances corresponding to each
function as independent vertical groups (Line 1). The vertical
groups are gradually merged in following iterations. Since the
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workflow processing latency is determined by the critical path,
FaaSPR adopts a greedy grouping strategy to simplify compu-
tational complexity. In each iteration, the algorithm prioritizes
optimizing the maximum data transmission overhead on the
critical path. Specifically, the algorithm calculates the DAG
critical path (Line 5), extracts the edges on the critical path
(Line 6), and sorts the edges in descending weight order (Line
7). Then, it traverses the edges in list e from front to back,
attempting to eliminate the edge weight by instance grouping.

When traversing edge e, the algorithm searches for the
source/destination functions of e with From()/To() (Line 9)
and locates the corresponding vertical groups with vGroup()
(Line 10). FaaSPR attempts to merge groups if the two
functions belong to different vertical groups (Lines 11 ∼ 14).
If the merged grouping strategy results in a feasible placement
strategy (Line 15), the algorithm updates the grouping record
and enters the next iteration (Lines 16 ∼ 17). Otherwise,
FaaSPR continues traversing list e. The algorithm converges
when no feasible grouping is found in list e (Line 18).

FaaSPR generates instance placement strategy P for vertical
grouping strategies with GetPlaceStrategy method (Line 19).
Element Pij in P represents the number of instances for
function i placed on server j, initialized to 0 (Line 20). For
each vertical group vg, FaaSPR first determines the number of
horizontal groups based on three principles. (i) The instance
number of each function in a horizontal group is at least
HG limit. We empirically set HG limit to 4 to balance
grouping flexibility and performance stability (Line 22). (ii)
The number of horizontal groups does not exceed the number
of worker servers (Line 23). (iii) Requirement with foreach
structure is satisfied (Lines 24 ∼ 25).

After horizontal grouping (Line 26), the algorithm calculates
the placement priority of each horizontal group on all servers
(Lines 27 ∼ 29). We leave the details of priority calculation
to Algorithm 2. It is sufficient to know that a negative priority
indicates infeasible placement due to resource constraints.
Horizontal groups are placed on the server with the highest
priority (Line 31 ∼ 32). If any horizontal group has no
server available for placement, GetPlaceStrategy terminates
and returns −1 (Line 30). Once all horizontal groups are
successfully placed, the algorithm returns the final deployment
plan P (Line 33).

B. Migration Minimizing Placing

Cold start overhead accounts for a considerable proportion
of the workflow processing. When selecting the placement
for instance groups, FaaSPR comprehensively considers the
workflow processing overhead from both cold start and data
transmission, reusing existing instances as much as possible
to avoid frequent cold starts.

Algorithm 2 demonstrates how FaaSPR calculates the prior-
ity of placing horizontal group hg on server j. The algorithm
first calculates the resource required (e.g., memory and CPU)
for placing hg. If the remaining idle resources on server j
are insufficient to deploy hg, it returns −1 and exits (Lines
1 ∼ 3). Otherwise, the algorithm calculates and accumulates
the priority for each function f in hg. The priority of func-
tions comes from two aspects. First, FaaSPR calculates the

Algorithm 2 Placing Priority Calculating (GetPriority)
Input: server id j, available resource of server j Rj , generating

placement strategy P, placement strategy of last scaling
interval last P and horizontal group to place hg.

Output: placing priority p.
1: m need←

∑
f∈hg f.resource ∗

f.num
hg num

2: if ResourceOccupied(P, j) +m need > Rj then
3: Return −1
4: p← 0
5: for f ∈ hg do
6: reuse cap← instanceNum(last P, j, f)
7: occ num← instanceNum(P, j, f)
8: if reuse cap > occ num then
9: reuse num← reuse cap− occ num

10: reuse num← min
(
reuse num, f.num

hg num

)
11: reuse ratio← hg num∗reuse num

f.num
12: p← p+ reuse ratio ∗ f.cs time
13: for e ∈ IncomingEdge(f) do
14: f∗ ← From(e)
15: if f∗ /∈ hg then
16: p← p+ instanceNum(P,j,f∗)

f∗.num ∗ e.weight
17: for e ∈ OutgoingEdge(f) do
18: f∗ ← To(e)
19: if f∗ /∈ hg then
20: p← p+ instanceNum(P,j,f∗)

f∗.num ∗ e.weight
21: p← p+ instanceNum(P, j, f) ∗Aggre factor
22: Return p

proportion of reused instances when placing, from which it
derives the expected saved cold start overhead as the first part
of the priority (Lines 6 ∼ 12). Second, FaaSPR checks for the
adjacent function of f from other groups on server j. Since
these functions can transmit intermediate data with f locally,
we accumulate the expected saved transmission overhead as
the second part of the priority. For simplicity, we assume a
random routing strategy in the algorithm, i.e., each function
request is executed on a randomly selected instance in the
cluster (Lines 13 ∼ 20). Additionally, if other instances serv-
ing f are already deployed on server j, we slightly increase the
placement priority. This is done to simplify the computational
complexity of the routing strategy generation algorithm (see
details in § V). The value of Aggre factor is small enough to
ensure that it only affects placement decisions when all other
conditions are the same (Lines 20).

Multiple workflows. FaaSPR is also applicable to handling
multiple workflows simultaneously. In this case, the placement
algorithm is applied to each workflow sequentially. Once the
placement strategy for a workflow is determined, FaaSPR
updates the available resource capacity on all worker servers
and handles the next workflow. To avoid performance skew
caused by placement order, FaaSPR randomizes workflow
placement order for each scaling request.

V. MULTI-STAGE LP-BASED ROUTING IN FAASPR

FaaSPR adopts a multi-stage LP-based routing algorithm to
specify the execution location for each function request. The
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TABLE I
NOTATION

algorithm uses the LP model to minimize the average pro-
cessing latency of the workflow. Meanwhile, we incorporate
an additional latency constraint into the LP model to control
the tail latency. By minimizing the latency constraint through
multiple LP solutions, the algorithm optimizes both average
and tail latency for workflow processing. In this section, we
introduce the routing algorithm in detail and explain how to
keep the algorithm overhead within milliseconds to ensure
scalability.

This section describes the routing algorithm for a single
workflow. When handling multiple workflows, the scheduler
applies the routing algorithm to each workflow in parallel. The
routing strategies among multiple workflows do not interfere
with each other.

A. System Model

In this section, we assume that the scheduler generates a
routing strategy for a workflow consisting of n functions in
a serverless cluster with m worker servers. The execution
durations of the functions are denoted as t1, t2, . . . , tn. The
instance scaling interval of the serverless platform is tscaling .
Matrix P refers to the placement of function instances, where
Pij indicates the number of instances of function i on server
j. To support switch structures in serverless workflows, we
assume that the workflow has w branches. For workflows
without any switch nodes, w = 1. Each branch corresponds
to a unique set of functions, and each workflow invoca-
tion executes a specific branch. The invocation frequency of
each branch during the next scaling interval is denoted as
O1, O2, . . . , Ow. The invocation frequency is one of the inputs
to our algorithm. In the current version, we predict the future
invocation frequency based on the historical trace and instance
number. More accurate prediction algorithms, which could
further enhance algorithm performance, are beyond the scope
of this paper.

Each time the serverless platform issues a scaling request,
the placement algorithm is executed first to generate a place-
ment strategy P. Thereafter, the routing algorithm determines
the execution locations for function requests based on the
specific P. The correspondence between function requests

TABLE II
ROUTING PATHS FOR FIGURE 2

and execution servers is referred to as the routing path. For
example, for the workflow segment and instance placement
shown in Figure 2a, all feasible routing paths are listed in
Table II.

For a given placement strategy, each branch of the workflow
corresponds to one or more feasible routing paths. We denote
the total number of routing paths from all the branches as r.
Matrix B represents the affiliation between routing paths and
branches. Bij = 1 indicates that routing path j is affiliated
with branch i; otherwise, Bij = 0. Routing path information
is recorded in matrix R. Each element of R is either 1 or
0. Rijk = 1 means function i is executed on server j in
routing path k; otherwise, Rijk = 0. If a branch in the
workflow does not execute function i, then for any paths j
belonging to this branch, we have

∑m
j=1Rijk = 0. Since the

execution locations have been determined in routing paths,
the data transmission overhead and overall workflow latency
can be calculated. l1, l2, . . . , lr denote the workflow processing
latency for each routing path. We do not involve cold starts
here as they affects only a small number of requests at the
beginning of each scaling interval. o1, o2, . . . , or represent the
execution frequency of each routing path, which is the output
of FaaSPR routing algorithm.

Table I summarizes the used symbols.

B. LP Constraints

FaaSPR leverages the LP model to optimize the execution
frequencies of routing paths. The LP model is subject to three
constraints: execution frequency, instance capacity, and latency
threshold.

Execution Frequency Constraint. Since each workflow
invocation corresponds to a routing path, the total execution
frequency of all routing paths is at least the overall access
frequency of the workflow. Furthermore, for each branch of
the workflow, the sum of the execution frequencies of its cor-
responding routing paths is no less than the access frequency
of that branch. Therefore, we can formulate Constraint 1.

r∑
j=1

Bijoi ≥ Oi,∀i ∈ [1, w] (Constraint 1)

Instance Capacity Constraint. To avoid long queuing, the
number of function requests assigned to each server should
not exceed the instance capacity. To enhance the system
robustness, we multiply the load capacity of each instance by
a constant factor α, to cope with traffic bursts and instance
failures, α ∈ (0, 1]. A larger α means full utilization of
instance capacity on low-latency paths, while a smaller α
allows more room for unexpected situations. We currently
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use an empirical value 0.9 for α to balance performance and
stability. Therefore, we can derive Constraint 2.

r∑
k=1

Rijkok ≤
αPij

ti
,∀i ∈ [1, n] ,∀j ∈ [1,m] (Constraint 2)

Latency Threshold Constraint. FaaSPR leverages aux-
iliary constraints to minimize the tail latency in workflow
processing. We use a latency threshold L to represent the
maximum allowed latency of all paths in the final routing
strategy. Based on this, we introduce Constraint 3.{

oi ≥ 0, li ≤ L
oi = 0, li > L

∀i ∈ [1, r] (Constraint 3)

To simplify Constraint 3, we reorder all routing paths in
ascending latency order, which means l1 ≤ l2 ≤ . . . ≤ lr.
Without loss of generality, we constrain L to be a specific
element in l1, l2, . . . , lr, with x representing the element index,
x ∈ {1, 2, . . . , r}. Therefore, Constraint 3 is equivalent to
Constraint 3* (L = lx).{

oi ≥ 0, ∀i ∈ [1, x]

oi = 0, ∀i ∈ (x, r]
(Constraint 3*)

C. Objective Function and Final LP Model

The objective of LP models is to minimize the average
latency, which can be characterized as:∑r

i=1 lioitscaling∑w
j=1Ojtscaling

Since the invocation frequencies O1, O2, . . . , Oj are deter-
mined and scaling interval tscaling is constant, the LP objective
is equivalent to min

∑r
i=1 lioi.

The complete LP model is presented below.

min

r∑
i=1

lioi

s.t.
r∑

j=1

Bijoj ≥ Oi, ∀i ∈ [1, w]

r∑
k=1

Rijkok ≤
αPij

ti
, ∀i ∈ [1, n] , ∀j ∈ [1,m]

oi ≥ 0, ∀i ∈ [1, x]

oi = 0, ∀i ∈ (x, r]

D. Multi-Stage LP

Except for o1, o2, . . . , or and x, all variables in the LP
model are already determined before the algorithm begins.
With a specific x, the LP output o1, o2, . . . , or represents the
execution frequencies of the routing paths which minimize
average latency. At the same time, due to Constraint 3, routing
paths whose latencies exceed lx have zero execution frequency,
thereby controlling the maximum workflow processing latency
within lx. As a result, FaaSPR achieves a comprehensive
optimization of both average and tail latency. The objective
of the algorithm is to find the smallest x and lx that allow LP

to have feasible solutions. FaaSPR determines the final x and
routing strategy o1, o2, . . . , or by adjusting x and re-solving
the LP model multiple times. oi (i ∈ [1, r]) represents the
frequency with which routing path i is selected for workflow
invocations. Note that multiple paths may be selected and used
simultaneously (i.e., |{oi|oi > 0}| ≥ 1).

During the scheduling phase, we select a routing path for
each workflow invocation using a weighted random algorithm.
For workflows without switch nodes (w = 1), the probability
of selecting routing paths i is oi∑r

j=1 oj
. For workflows with

multiple branches, it is impossible to determine which branch
will be executed at the beginning of the workflow execution.
FaaSPR first randomly selects route path i from all the paths
based on probability oi∑r

j=1 oj
. When executing function j

in the workflow, if path i includes the execution location
of function j, the scheduler deploys function j according
to path i. Alternatively, we search for all the routing paths
containing function j and select a new path k from them.
The algorithm then assigns function j and subsequent function
requests according to path k.

Overhead. The algorithm overhead is negligible with
small clusters. However, as the cluster size and the number
of instances increase, the number of routing paths grows
exponentially, slowing down LP resolution. We adopt three
approaches to reduce the algorithm overhead.

First, FaaSPR groups the cluster nodes into groups of 8
servers. The scaling request is distributed to multiple server
groups, and each group generating placement and routing
strategies individually. Server grouping reduces the size of
individual LP models and speeds up computation through
parallelism. Although this method restricts cross-server data
transmission to within the same server group, experiments
show no impact on the algorithm performance. When dis-
tributing scaling requests, FaaSPR prioritizes server groups
with the largest resource capacity and maximizes the resource
utilization of these groups, avoiding resource fragmentation.
Second, when generating placement strategies, FaaSPR pri-
oritizes placing instances together when other conditions are
the same (Line 21 in Algorithm 2), reducing the number
of feasible routing paths as well as LP model size. Finally,
FaaSPR uses binary search to determine x from {1, 2, . . . , r},
reducing LP solution times. With these optimizations, the
placement and routing algorithms maintain millisecond-level
latencies even in large-scale clusters. We demonstrate the
scalability of FaaSPR in Section VII-E.

VI. IMPLEMENTATION

We implement a prototype of FaaSPR with ∼2800 LOC
in Python, with Kubernetes [35] for instance management,
Redis [36] for intermediate data storage, and SciPy [37] for
LP solving.

Workflow manager. We use containers as the serverless
function instance and implement a workflow manager based
on the Kubernetes container orchestration. The manager parses
user-defined workflow from YAML files and deploys functions
based on dependencies. We limit container resource usage
through Kubernetes deployment configurations and specify
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instance placement locations based on node affinity. Data
transmission between functions is implemented using Redis.
We deploy a Redis instance on each worker server for local
data transmission and on a separate server as the remote
storage.

Transmission manager. We develop a data transmission
library for our prototype. In our prototype, function outputs
are saved in local memory after execution. Before assigning
function requests, the scheduler identifies the storage location
of the function inputs based on deployment trace. The storage
information is sent to the worker server along with function
requests. During execution, functions read and write data
through unified interfaces provided by the data transmission
library. For write operations, the library stores data in the local
Redis. When reading data, the library first checks its storage
location. If the data is stored on the local server, the library
retrieves it directly from the local Redis. Otherwise, the library
sends a remote request to transfer the data from the source
server to remote storage and subsequently retrieves it from
the remote storage. The library tracks the size of transmission
data and sends the size information back to the scheduler
with the function completion signal. The scheduler calculates
the average transmission data size according to the invocation
trace, which is used for workflow placement and routing. The
library can easily integrate with other remote storage services
by modifying the storage access instructions.

Placement and routing scheduler. We implement the
FaaSPR algorithm with ∼700 LOC in Python. In each scaling
process, the scheduler first calculates the instance placement
strategy based on user-provided workflow information, the
current instance placement status, and the instance scaling
request. Subsequently, the scheduler generates LP models
based on the placement strategy and solves them with SciPy.
The final model solution indicates the probabilities for routing
path selection. The scheduler chooses a routing path for each
workflow invocation based on the weighted random algorithm.

VII. EVALUATION

In this section, we first evaluate the overall performance
of FaaSPR against the state-of-the-art solution FaaSFlow [17]
(§ VII-B). Second, we explore from a micro perspective
whether FaaSPR can avoid latency fluctuations caused by
instance scaling (§ VII-C). Then, we dive into FaaSPR to
analyze the effectiveness of its techniques (§ VII-D). Finally,
we investigate the scalability of FaaSPR (§ VII-E).

A. Evaluation Setup

Benchmarks. We selected six workflows as benchmarks
to validate the performance of FaaSPR under different
applications.
• Video processing. The video processing application

extracts metadata, converts formats, and adds watermarks
to videos using FFmpeg [38]. Depending on the size
of the uploaded videos, users can choose either simple
sequential or parallel processing based on automatic
video segmentation. This application is accessible on

Fig. 7. Application benchmarks. (a) Video Processing. (b) Driver Searching.
(c) ResNet50 Training. (d) Checklist Review. (e) Calculator. (f) Travel Guide.

Alibaba Cloud Computing as a serverless workflow use
case [4].

• Driver searching. As part of the ride-sharing system, the
driver searching function assists users in finding nearby
drivers available for carpooling. Users need to log in
to the system first. Upon successful login, the system
retrieves data from the driver location database and filters
out a list of nearby drivers for the user to choose from.
This is one of the examples provided by Azure Logic
Apps [5].

• ResNet50 training. Online model updating is one of the
typical applications of serverless workflow. This appli-
cation periodically fetches updated data from an online
database and performs data preprocessing and model
training. After that, the application evaluates the inference
accuracy of the new model and returns the evaluation
results along with the updated model. Relevant code can
be found in the examples of AWS Step Functions [6].

• Checklist review, calculator, and travel guide.
To demonstrate the performance of FaaSPR under
millisecond-scale workflows, we extract these three work-
flows from the example code provided by AWS Step
Functions [39], Azure Logic Apps [40], and Google
Cloud Workflows [41]. The processing times of these
workflows are in the millisecond range.

Figure 7 summarizes the control logic of these workflows.
The application workflows incorporate various control logics
(e.g., sequential, switch, and foreach) and vary in terms of
task scale and data volumes, thus providing a comprehensive
reflection of the actual performance of FaaSPR. In the driver
searching application, we assume that one in ten users fails
to log in. In other switch nodes, the probability of executing
different branches is equal.
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Workload generation. We generate the simulated user
traffic based on the Azure Function Dataset [18]. Since this
dataset does not include workflow information, we use traces
of individual functions instead. Unless otherwise specified, the
trace is extracted from the top 2% frequent invocation traces,
with the average and peak invocation frequencies of 203.8
req/min and 264 req/min, respectively. The data selection is
representative because, in serverless scenarios, the majority
of requests come from a small number of applications that
are invoked most frequently [18]. Since invocation traces in
the dataset are recorded at minute granularity, we generate
invocation patterns within each minute based on the Poisson
distribution. In line with the existing platform [26], [27], we
set the scaling interval to 1 minute.

We treat memory as the primary resource of an instance,
with CPU resources proportional to memory (2GB per CPU
core). The default available bandwidth for each instance is
50MB/s. Based on local performance testing, we set the
memory requirements for each type of instance to range from
0.5GB to 2GB, which is consistent with mainstream serverless
platform [33], [34].

Cluster configuration. Our experiments are conducted on
CloudLab using a cluster consisting of 10 r6525 instances (64
cores, AMD EPYC 7543 CPU @ 2.8GHz). Eight of them
serve as working servers (each has 64 CPU cores and 128GB
memory of allocable resources), one as the remote storage, and
the last as the scheduler and user request generator. To simulate
the mixed workloads of different applications within a cluster,
we assume that only a portion of the worker server resources is
available for the target application. Unless otherwise specified,
the available resource proportions across different servers are
sampled from a normal distribution with a standard deviation
of 0.8, with a total available resource of ∼402 GB memory.

Baseline. We compare FaaSPR against FaaSFlow, the state-
of-the-art solution that systematically optimizes placement and
routing strategies for serverless platforms. Based on a grouping
algorithm, FaaSFlow centrality deploys functions with data
dependencies to maximize local data transmission.

We compared the average and tail latency, as well as the
resource consumption, between FaaSPR and the baseline.
Resource consumption refers to the sum of the product of
resource occupation and execution time for all instances
processing the workflow, which reflects the cost for users.
For ease of presentation, we normalize resource consumption
based on FaaSFlow performance in all comparisons. Each data
point following is obtained during an hour-long evaluation,
and we excluded the latency data from the first 5 minutes
to disregard the influence of the initial cold start. Unless
otherwise specified, we use video processing, normalized
resource distribution, and 50MB/s bandwidth as the represent
setup.

B. Benefits of FaaSPR

We first compare the overall performance of FaaSPR to
FaaSFlow under different workflow, bandwidth, and resource
distribution configurations.

Comparison under different workflows. Figure 8
compares the performance of FaaSPR and FaaSFlow in

Fig. 8. Comparison between FaaSPR and FaaSFlow with different workflows.
(a) Average latency. (b) 99th tail latency. (c) Resource consumption.

processing different workflows. For second-level applications
(i.e., video processing, driver searching, and ResNet50 train-
ing), the average and tail latencies of FaaSPR are reduced
by 48.62%∼62.97% and 41.64%∼51.99%, respectively,
compared to FaaSFlow. Additionally, FaaSPR achieves a
23.77%∼46.18% reduction in resource usage. For millisecond-
level workflows (i.e., checklist review, calculator, and travel
guide), the average and tail latencies of FaaSPR are
16.82%∼35.91% and 86.60%∼93.46% lower than FaaS-
Flow, respectively. The resource consumption of FaaSPR is
1.55%∼11.07% lower than FaaSFlow.

Compared with second-level workflows, FaaSPR signifi-
cantly reduces the tail latency of millisecond-level workflows,
while the improvements in average latency and resource
utilization are relatively small. This is because millisecond-
level workflows need fewer instances. In most cases, all
instances can be deployed on a single server without the need
for additional placement algorithms. Therefore, the instance
placement strategies of FaaSFlow and FaaSPR are similar, with
the main performance difference arising from the cold start
overhead. Due to the lightweight nature of millisecond-level
workflows, the impact of cold start latency on overall delay
is more pronounced, making the optimization of tail latency
more significant.

Comparison under different bandwidths. Secondly, we
demonstrate the performance differences between FaaSPR and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peking University. Downloaded on April 02,2025 at 01:36:43 UTC from IEEE Xplore.  Restrictions apply. 



JIA et al.: FaaSPR: LATENCY-ORIENTED PLACEMENT AND ROUTING OPTIMIZATION 11

Fig. 9. Comparison between FaaSPR and FaaSFlow under different network bandwidths. (a) Average latency. (b) 99th tail latency. (c) Resource consumption.

Fig. 10. Comparison between FaaSPR and FaaSFlow under different resource distributions. (a) Average latency. (b) 99th tail latency. (c) Resource consumption.

FaaSFlow in different bandwidth constraints. In Figure 9, we
adjusted the bandwidth limitation between remote storage and
worker servers from 25MB/s to 100MB/s. Under different
bandwidth conditions, FaaSPR improves average latency, 99th
tail latency, and resource consumption by 62.97%∼66.50%,
51.99%∼75.46%, and 9.94%∼43.66%, respectively, compared
to FaaSFlow.

Compared to FaaSFlow, the performance of FaaSPR in
tail latency is less affected by bandwidth because FaaSPR
minimizes the amount of data transmission across servers.
As a result, the workflow tail latency is primarily influ-
enced by instance cold starts and function request queuing.
When the bandwidth is high, the advantage of FaaSPR in
terms of resource consumption diminishes. This is because
FaaSPR reduces instance execution duration by minimizing
data transmission overhead. When the bandwidth is high, the
transmission overhead is already small, leaving less room for
optimization.

Comparison under different resource distributions. We
show the performance of FaaSPR under different server
resource distributions. We introduce two new resource distri-
bution patterns: uniform distribution and Zipf distribution. In
the uniform distribution, 75% of the resources are available
for each server to process workflows. In the Zipf distribution,
the proportion of available resources on each server is deter-
mined by a Zipf distribution (with α = 0.9 and n =8). As
shown in Figure 10, the average latency, 99th tail latency,
and resource consumption of FaaSPR are 6.55%∼68.03%,
47.22%∼74.33%, and 11.79%∼41.62% lower than FaaSFlow,
respectively.

FaaSPR performs similarly under normal and uniform distri-
butions. Under the Zipf distribution, where server resources are
relatively concentrated, the advantage of dispersed grouping in
FaaSPR over FaaSFlow is less pronounced, resulting in similar
performance in terms of average latency and resource usage.
In terms of tail latency, FaaSPR shows a significant advantage
over FaaSFlow due to its optimization of cold start overhead
and request queuing delays.

TABLE III
PERFORMANCE COMPARISON UNDER MULTIPLE WORKFLOWS

Comparison under multiple workflows. We demonstrate
the performance of FaaSPR when serving multiple work-
flows simultaneously. In this section, we scale down the
invocation frequency accordingly to ensure that the total
resource demand of all instances does not exceed the cluster
capacity. Table III shows the average and tail latencies of
all workflows. Compared with FaaSFlow, FaaSPR reduces
the average and tail latencies of different workflows by
0.28%∼64.12% and 25.60%∼93.22%, respectively. Overall,
FaaSPR effectively reduces both the average and tail laten-
cies when handling multiple workflows. In terms of resource
usage, FaaSPR reduces resource consumption by up to 54.96%
compared with FaaSFlow when invoking different work-
flows. Detailed resource usage data is omitted for space
reasons.

Performance analysis. To further demonstrate the rea-
sons for FaaSPR performance advantage, Figure 11 provides
a detailed illustration of the average time consumption of
FaaSPR and FaaSFlow during workflow processing. Compared
to FaaSFlow, FaaSPR reduces time consumption in inter-
server data transmission, instance cold starts, and function
request queuing by 55.41%, 90.59%, and 84.05%, respectively.
Overall, FaaSPR reduces the extra overhead in workflow
processing by 76.58%.
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Fig. 11. Time consumption in workflow processing.

Fig. 12. Data transmission distribution for (a) FaaSPR and (b) FaaSFlow.

The outperforms of FaaSPR are attributed to its opti-
mization for placement and routing strategies. First, FaaSPR
maximizes local data transfer based on the horizontal and
vertical grouping algorithm. Secondly, FaaSPR maintains the
original placement of function instances as much as possible
during the scaling process to minimize cold start over-
head. In contrast, FaaSFlow completely disregards cold start
overhead and causes frequent instance migrations. Finally,
FaaSPR balances the load capacity of different functions
within worker servers through the grouping algorithm and
minimizes function request queuing delays through further
routing optimization. In addition, due to the optimization
of cold-start and data transfer overhead, FaaSPR objectively
reduces the execution time of function requests and decreases
potential function request queuing delays.

We give a more detailed demonstration of FaaSPR advan-
tage in data transmission. Figure 12 illustrates the transmission
distribution among worker servers under FaaSPR and FaaS-
Flow. The horizontal and vertical axes represent server indices,
and the color depth indicates the proportion of data trans-
mission from horizontal to vertical servers. The red lines
refer to local data transmission. The proportion of local
data transmission in FaaSPR and FaaSFlow is 76.20% and
42.72%, respectively. As shown in the figure, the local data
transmission in FaaSFlow is more concentrated but accounts
for a smaller proportion. This is because FaaSFlow tends to
deploy instances with data dependencies in a concentrated
manner. The scale of concentrated deployment is limited by
the resource capacity of servers under high load, leading
to suboptimal performance. In contrast, FaaSPR disperses
instance groups across multiple servers, breaking the resource
limitations of a single server and enhancing the potential for
local data transmission.

Fig. 13. Comparison between FaaSPR and FaaSFlow at the micro-scale.

C. Micro-Scale Benchmark

In this section, we show the advantage of FaaSPR during
function scaling through fine-grained performance monitoring.
Figure 13 shows the corresponding latency per workflow
invocation for FaaSPR and FaaSFlow over 20 minutes. The
figure includes 19 instances of scaling, which we categorize
into two types: instance expansion due to increased user traffic
(marked with red dashed lines) and instance contraction due to
decreased user traffic (marked with green dashed lines). It can
be observed that FaaSPR maintains stable workflow processing
latencies during most scaling processes. In contrast, FaaSFlow
exhibits significant latency fluctuations, with peak latencies of
99.4 seconds. Additionally, the latency of FaaSFlow remains
consistently higher than FaaSPR throughout the entire scaling
interval.

The performance advantage of FaaPR over FaaSFlow comes
from two sources. On the one hand, FaaSPR maintains the
original placement of function instances during the scaling
process. This not only reduces the cold start overhead for
individual functions but also avoids the cascading cold start
problem, thereby avoiding significant fluctuations in workflow
processing latency. Note that the cascading cold start affects
not only the latencies near the scaling points but also leads
to queuing and blocking of subsequent function requests,
resulting in increased response latency for a large number of
user invocations. On the other hand, based on the horizontal
and vertical grouping algorithm and routing optimization,
FaaSPR increases the proportion of local data transmission and
reduces the queuing delay of function requests. This makes the
workflow processing efficiency of FaaSPR steadily higher than
that of FaaSPR in the scaling interval.

D. Effectiveness of FaaSPR

In this section, we investigate the impact of the tech-
niques employed by FaaSPR. We measure FaaSPR with the
following three simplified versions: (i) DataTrans* based
on random routing strategy, utilizes horizontal and vertical
grouping algorithms to reduce inter-server traffic; (ii) Cold-
Start* based on random routing strategy, utilizes migration
minimizing placement to avoid cold start; (iii) Routing*
adopts random placement and multi-stage LP-based routing
strategy in FaaSPR. We also provide the evaluation results of
FaaSFlow for reference. As shown in Figure 14, compared
to FaaSFlow, the simplified versions DataTrans*, ColdStart*,
and Routing* reduce average latency by 18.15%, 51.42%,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peking University. Downloaded on April 02,2025 at 01:36:43 UTC from IEEE Xplore.  Restrictions apply. 



JIA et al.: FaaSPR: LATENCY-ORIENTED PLACEMENT AND ROUTING OPTIMIZATION 13

Fig. 14. Latency comparison between FaaSPR and three simplified versions.

Fig. 15. Comparison between FaaSPR and FaaSFlow under 16 worker servers.
(a) Average latency. (b) 99th tail latency.

55.00%, tail latency by 13.96%, 41.92%, 47.80%, and resource
consumption by 1.58%, 0.67%, 12.32%, respectively. As each
of the three simplified versions represents a technique in
FaaSPR, the results indicate that all three techniques can
reduce latency and resource consumption for FaaSPR.

As observed from the figure, DataTrans* performs sim-
ilarly to FaaSFlow. This is because DataTrans* lacks the
support of routing strategies, which can result in functions
within the same workflow being routed to different horizon-
tal groups, limiting the algorithm advantage. Additionally,
Routing* shows a significant reduction in latency across all
simplified versions. This is because the routing algorithm iden-
tifies potential data dependencies between randomly placed
instances and reduces cross-server data transmission to some
extent. Moreover, it balances instance loads and reduces func-
tion request queuing, further lowering processing latency.

E. Scalability

Finally, we evaluate the scalability of FaaSPR. Due to
testbed limitations, this section includes both real and sim-
ulated experiments. We first demonstrate the performance of
FaaSPR on a larger-scale cluster. Then we show the system
overhead of the FaaSPR scheduler on up to 1024 nodes.

In the larger-scale cluster experiment, we increased the
number of worker nodes to 16 and proportionally scaled the
workflow invocation frequency, while keeping other condi-
tions constant. We selected video processing and checklist
review as representative second-level and millisecond-level
workflows, respectively. Figure 15 shows the average and tail
latencies for both workflows. Compared to FaaSFlow, FaaSPR
reduces the average and tail latencies by 36.05%∼56.41%
and 44.44%∼92.23%, respectively. FaaSPR reduces resource

Fig. 16. The average latency of FaaSPR in handling scaling request.

usage for the video processing and checklist review workflows
by 35.41% and 3.04%, respectively. This result omitted in the
figure for space. These results are consistent with those from
a smaller cluster, confirming that FaaSPR maintains stable
performance at larger scales.

We then evaluate the system overhead of the FaaSPR
scheduler. Figure 16 shows the average latency of the FaaSPR
scheduler in handling scaling requests under different cluster
sizes and invocation frequencies. We simulate the load of
workers from 64 servers to 1024 servers on the scheduler. To
eliminate burst traffic interference, we manually generate invo-
cations at a stable frequency, instead of using the trace from
the Azure Function Dataset [18]. The results show that, even
with 1024 worker nodes and 11,000 req/min invocations, the
handle latency remains below 900 milliseconds, much smaller
than the minute-level scaling intervals of existing serverless
platforms [26], [27]. This indicates that the scheduler can
promptly respond to scaling requests, even in large-scale
clusters, highlighting its scalability.

It is important to note that the scaling handle latency
is unrelated to the workflow scheduling overhead. Scaling
handle latency is the duration the scheduler takes to update
placement and routing strategies for scaling requests. When
processing user workflow requests, the scheduler applies the
weighted random algorithm to assign function requests to
worker servers. Internally, the generation of placement and
routing strategies occurs in parallel with workflow request
scheduling. The scheduler updates the random weights only
after generating new routing strategies. In our experiments,
we observed that the workflow scheduling overhead remains
consistently at the microsecond level, which is negligible for
serverless workflow latency.

VIII. RELATED WORK

In this section, we review the related work of FaaSPR
from the perspectives of serverless workflow processing and
placement and routing strategies.

Serverless Workflow Optimization. Serverless workflow
optimization is not an emerging research topic. Numerous
studies have aimed to improve workflow execution speed or
enhance deployment cost-effectiveness from various perspec-
tives, such as instance cold starts [18], [19], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
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[56], [57], [58], [59], intermediate data transmission [12],
[13], [16], [17], [60], task scheduling [61], [62], platform
architecture [17], [60], [63], and so on.

In terms of cold starts, early works relied on heuristic algo-
rithms to reserve instances according to function invocation
frequencies [18], [42]. This method is simple and effective
but overlooks the dependencies among functions within work-
flows. By incorporating workflow structure, ORION [43],
Kraken [59], and Xanadu [44] propose various heuristic traffic
prediction methods, while AQUATOPE [45] predicts user traf-
fic through neural networks. Accurate traffic prediction allows
instance scaling requests to match actual user traffic better,
enhancing the optimization potential of FaaSPR. Beyond traf-
fic prediction, numerous studies have focused on reducing cold
start overhead by accelerating image transmission times [19],
[46], [47], [48], [49], [50], speeding up instance initialization
[51], [52], [53], [54], [55], [57], [58], or improving instance
reusability [56]. These works are orthogonal to FaaSPR and
can further enhance it.

Regarding data transmission, due to the high overhead of
remote storage services, most works replace remote storage
services with local databases [12], [13], [16], [17], [60].
FaaSFlow [17] and SPRIGHT [60] utilize shared memory to
handle data exchange between instances deployed on the same
server. SAND [16] adopts a similar approach but deploys
the workflow within a single container to reduce cold start
overhead. When remote data exchange is unavoidable, SONIC
[12] and Pocket [13] select appropriate storage solutions based
on user requirements to optimize transmission performance
and deployment costs. FaaSPR, consistent with previous work,
utilizes shared memory to reduce data transmission overhead.
Additionally, some approaches optimize serverless workflow
processing through task scheduling [61], [62] and control plane
accelerating [17], [60], [63], which are also orthogonal to
FaaSPR and can serve as a complement.

There is a lack of efficient placement and routing optimiza-
tion for serverless workflow processing. Palette [20] deploys
instances within the same workflow together to reduce data
exchange overhead. However, the placement strategy of Palette
relies entirely on user annotations and cannot distinguish
between different functions within a workflow. FaaSFlow
[17] groups and places instances based on the workflow
structure and function dependencies, but the strategy does not
consider server hardware resource limitations, which restricts
its performance. In contrast, FaaSPR overcomes the grouping
limitations imposed by server resource capacity while elim-
inating various overheads such as cold starts and function
request queuing, effectively optimizing workflow execution
performance.

Placement and Routing. placement and routing opti-
mization has undergone extensive and in-depth research in
integrated circuits [64], [65], [66], [67], virtual network func-
tions [68], [69], [70], [71], [72], and edge computing [68],
[73], [74], [75], [76], [77] to determine the deployment loca-
tions of functional units and the routing paths for user requests
or electronic signals. However, the placement and routing
optimization in serverless workflow processing have differ-
ent optimization goals and constraints, making it difficult to

apply previous approaches directly. For instance, the integrated
circuit domain focuses on the spatial arrangement of circuits
[64], [65], [66], [67], while virtual function networks and edge
computing emphasize the spatial relationship between function
units, the core network, and users [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77]. Xu et al. proposed a placement
and routing strategy for deploying serverless workflows in
edge networks [21]. However, their model relies on an edge
scenario, where there is no remote storage service (data
transmission is achieved through limited network topology
between servers) and does not consider bandwidth constraints,
making it unsuitable for serverless platforms in data centers.
Linear programming is a commonly used heuristic algorithm
in the above fields [66], [69], [75]. FaaSPR adopts the concept
of linear programming and designs a targeted placement and
routing optimization based on the characteristics of serverless
workflow processing.

IX. CONCLUSION

This paper presents FaaSPR, which optimizes instance
placement and request routing for serverless workflow pro-
cessing. On the one hand, FaaSPR eliminates inter-server data
transmission through horizontal and vertical instance grouping
and reduces cold start overhead by heuristic instance reusing
strategy. On the other hand, the multi-stage LP-based routing
algorithm of FaaSPR cooperates with the placement strategy to
avoid queuing delays for function requests while maximizing
local data transmission. As shown in experiments, FaaSPR
effectively reduces the average and tail response latencies
of serverless workflows across various evaluation scenarios
while reducing user resource usage and deployment costs. We
hope our work opens the door to more placement and routing
optimizations for serverless workflow processing.
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