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Retrieval-Augmented Generation (RAG) has demonstrated substantial advancements in various natural lan-
guage processing tasks by integrating the strengths of large language models (LLMs) and external knowledge
databases. However, the retrieval step introduces long sequence generation and extra data dependency,
resulting in long end-to-end latency.

Our analysis benchmarks current RAG systems and reveals that, while the retrieval step poses performance
challenges, it also offers optimization opportunities through its retrieval pattern and streaming search behavior.
We propose RAGCache, a latency-optimized serving system tailored for RAG. RAGCache leverages the retrieval
pattern to organize and cache the intermediate states of retrieved knowledge in a knowledge tree across the
GPU and host memory hierarchy, reducing LLM generation time. RAGCache employs dynamic speculative
pipelining to exploit the streaming search behavior, overlapping retrieval with LLM generation to minimize
end-to-end latency. We implement RAGCache based on vLLM and Faiss, and evaluate it on both open-source
and production datasets. Experimental results demonstrate that RAGCache reduces the time to first token
(TTFT) by up to 4× and improves the throughput by up to 2.1× compared to vLLM integrated with Faiss.
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1 Introduction
Retrieval-augmented generation (RAG) [1, 2] is a hybrid approach in natural language
processing (NLP) that combines retrieval-based and generation-based models to improve the
quality and relevance of generated text. Traditional large language models (LLMs) like GPT-3 [3]
generate text based solely on the training data, which struggle to incorporate the latest information
or complex knowledge patterns. With informative external knowledge, RAG has achieved
comparable or even better performance than LLMs fine-tuned for specific downstream tasks [4].
For an RAG request, RAG includes two main steps: retrieval and generation. Initially, relevant

documents are retrieved from a knowledge database, where the documents are typically encoded
as feature vectors using embedding models and retrieved through vector similarity search. Then,
RAG injects the retrieved documents (i.e., external knowledge) into the original request and feeds
the augmented request to the LLM for generation. With the help of the retrieved documents, RAG
expands LLMs’ knowledge base and contextual understanding, thereby improving the generation
quality [4].

However, the two-step process of RAG poses significant challenges in terms of end-to-end latency
as shown in Figure 1. First, with knowledge injection, RAG introduces long sequence generation,
resulting in higher computation costs and extended generation time. For instance, an initial request
of 100 tokens may be augmented with retrieved documents totaling 1,000 tokens, leading to over
10× the computation latency compared to the original request. Second, RAG serving suffers from
the data dependency between the retrieval and generation steps, where the generation must wait for
the retrieval to complete. This results in idle GPU resources during retrieval and further exacerbates
end-to-end latency.
Recent work [5, 6], focusing on system optimizations of LLM generation, has made progress

in mitigating the long sequence issue by sharing intermediate states during inference. vLLM [6]
manages the intermediate states in non-contiguous memory blocks to allow fine-grained state
sharing across multiple generation iterations for a single request. SGLang [5] identifies the reusable
intermediate states across different requests for LLM applications like multi-turn conversations and
tree-of-thought [7]. However, these efforts only optimize for LLM inference without considering
the characteristics of RAG. They cache the intermediate states in GPU memory, which has limited
capacity considering the long sequences in augmented requests, leading to suboptimal performance.

To identify optimization opportunities, we conduct a system characterization of RAG, measuring
the performance of current RAG systems under various datasets and retrieval settings with represen-
tative LLMs (Section 3). Our analysis reveals two key opportunities to optimize end-to-end latency
for RAG systems. First, identical documents often recur across multiple RAG requests. Additionally,
a small fraction of documents accounts for most retrievals, so we are able to cache intermediate
states for frequently accessed documents to reduce redundant computation. Second, the retrieval
step follows a streaming search behavior, where the vector search algorithms continuously update
the top-𝑘 results during the search process. We can leverage this observation to break the data
dependency between retrieval and generation and minimize the end-to-end latency.
Based on these insights, we propose RAGCache, a latency-optimized serving system tailored

for RAG. RAGCache is the first system that exploits the data characteristics and system behavior
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Fig. 1. RAG latency breakdown.

of the retrieval step to minimize end-to-end latency. For long sequence generation, RAGCache
organizes the intermediate states of retrieved documents into a knowledge tree, efficiently caching
them within the GPU and host memory hierarchy. Frequently accessed documents are stored in fast
GPU memory, while less accessed ones are placed in slower host memory. For the data dependency,
RAGCache employs a dynamic speculative pipelining strategy, using temporary search results for
speculative LLM generation to overlap retrieval with LLM inference.
There are two main challenges in realizing RAGCache. First, RAG systems are sensitive to the

order of retrieved documents. For example, consider two documents𝐷1 and𝐷2, and two requests 𝑄1
and 𝑄2. Let the relevant documents for 𝑄1 be [𝐷1, 𝐷2] and for 𝑄2 be [𝐷2, 𝐷1], where [𝐷1, 𝐷2]means
𝐷1 is more relevant than 𝐷2. The intermediate states (i.e., key-value tensors) of [𝐷1, 𝐷2] differ from
those of [𝐷2, 𝐷1] because, in LLMs, the key-value tensor for a new token depends on preceding
tokens in the attention mechanism [8]. Unfortunately, we cannot simply swap the order of 𝐷1 and
𝐷2, as recent studies have shown that the generation quality of LLMs is affected by document
order [9, 10]. We use a knowledge tree to organize the intermediate states of retrieved documents in
the GPU and host memory hierarchy and design a prefix-aware Greedy-Dual-Size-Frequency
(PGDSF) replacement policy that comprehensively considers the document order, size, frequency,
and recency to minimize the miss rate. We also propose a cache-aware request scheduling approach
to further improve the hit rate.
Second, breaking the data dependency between retrieval and generation requires algorithm-

system co-design since different vector search algorithms have different system characteristics.
This dependency is challenging to eliminate because incorrect retrieval results can degrade the
quality of generation. To address this, we propose dynamic speculative pipelining, which divides
the vector search process into multiple stages and overlaps the computation of both steps while
maintaining generation quality. For the system implementation, we focus on two representative
vector search algorithms, IVF [11] and HNSW [12], and design a pipelined vector search scheme
that adapts to these algorithms.

We implement an RAGCache prototype and evaluate it on both open-source and internal datasets.
Experimental results show that RAGCache outperforms the state-of-the-art solution, vLLM [6]
integrated with Faiss [13], by up to 4× on time to first token (TTFT) and improves the throughput
by up to 2.1×. Compared to SGLang [5], which reuse the intermediate states in GPU memory,
RAGCache reduces the TTFT by up to 3.5× and improves the throughput by up to 1.8×.
In summary, we make the following contributions.
—We conduct a detailed system characterization of RAG, which reveals the performance
limitations and optimization opportunities.

—We propose RAGCache, to the best of our knowledge, the first serving system that exploits
the characteristics of RAG to minimize the end-to-end latency.
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—We design a multilevel dynamic cache with a prefix-aware GDSF replacement policy to
minimize LLM generation time and a dynamic speculative pipelining approach to minimize
the end-to-end latency.

—We implement a RAGCache prototype. The evaluation shows that RAGCache outperforms
state-of-the-art solutions by up to 4× on TTFT and 2.1× on throughput.

2 Background
RAG marks a notable advancement in NLP and machine learning by integrating LLMs with the
extensive information available in external knowledge databases. RAG enhances generative models
by dynamically retrieving relevant information from a corpus during the generation process, leading
to more accurate, relevant, and contextually enriched responses. This hybrid approach leverages
the deep contextual understanding of LLMs alongside the precision of knowledge retrieval. Recent
studies [1, 2, 14–17] have demonstrated that RAG significantly improves the generation quality
across various benchmarks when compared to purely generative models. The RAG framework has
since been widely applied to diverse tasks such as question answering [18, 19], content creation [20],
and code generation [21, 22], showcasing its versatility and promise.
As shown in Figure 2, RAG follows a two-step workflow: retrieval and generation, combining

offline preparation with real-time processing for enhanced performance. In the offline phase, RAG
converts external knowledge sources, like documents, into high-dimensional vectors using advanced
embedding models and indexes them in a vector database for efficient retrieval. Upon receiving a
user request, RAG first accesses this vector database to conduct a vector similarity search, retrieving
semantically relevant documents. It then combines the retrieved documents with the user request
to create an augmented request, which is processed by an LLM to generate a more informed and
contextually rich response.

In an RAG workflow, retrieval is typically handled by CPUs, while LLM generation runs on GPUs.
From a system perspective, the end-to-end performance of RAG depends on both steps. The retrieval
time is influenced by the vector database’s scale and the users’ accuracy requirements—searching
more vectors boosts accuracy but increases time. The generation time is determined by the model
size and sequence length.

3 RAG System Characterization
In this section, we present a comprehensive system characterization. We first analyze RAG’s end-to-
end latency. Then, we explore retrieval patterns for caching optimizations and discuss the streaming
search behavior.

3.1 RAG Latency Breakdown
Retrieval time.The retrieval step typically uses Approximate Nearest Neighbor (ANN) [11]
search to find the vectors in the database most similar to the input. Its execution time varies based
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on the database size and accuracy requirements, typically ranging from tens of milliseconds to a
few seconds [23, 24]. This is because ANN search involves a fundamental tradeoff between accuracy
and latency. For example, an ANN algorithm might achieve 90% recall, meaning 90% of the returned
results are among the true top-k nearest vectors, by exploring only a small fraction of the index.
To approach exact results, however, a much more exhaustive search is necessary. Therefore, when
applications demand high-fidelity retrieval, the search latency can increase substantially, potentially
becoming a bottleneck that takes as long as, or even longer than, the generation step.

Genration time. LLM inference can be divided into two distinct phases: prefill and decoding. The
prefill phase involves computing the key-value tensors of the input tokens, while the decoding
phase generates the output token in an auto-regressive manner based on the previously generated
key-value tensors. The prefill phase is particularly time-consuming, as it requires to compute the
entire input sequence’s key-value tensors.

We evaluate the generation time with fixed output length and different input lengths on Llama2-
7B, the smallest model in the Llama2 series [25]. Larger models will have longer generation time.
The backend system is vLLM [6] equipped with one NVIDIA A10G GPU. Figure 3 shows that the
generation time, mainly dominated by the prefill phase, increases rapidly with sequence length and
reaches one second when the sequence length is larger than 4,000 tokens.

The sequence length in the LLM generation step is the token number of the original request plus
the retrieved document. We generate a document dataset based on the Wikipedia corpus [26] with
∼0.3 million documents from most popular Wikipedia pages. Figure 4 demonstrates the distribution
of the document length and the request length. The document length is significantly longer than
the request length of the MMLU dataset [27]. With an average document length of 3,718 tokens,
the corresponding generation time is markedly higher than that of the original request.

3.2 Opportunity 1: Knowledge Caching
The generation step’s performance bottleneck primarily arises from processing the long sequence’s
key-value tensors in attention blocks. A simple yet effective optimization for RAG involves caching
these key-value tensors of previously retrieved documents. For example, let requests, 𝑄1 and 𝑄2,
both refer to the same document, 𝐷1. If 𝑄1 arrives first, the key-value tensors of 𝐷1 are computed,
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and we can cache the key-value tensors. When 𝑄2 arrives, we can reuse the cached key-value
tensors to reduce the prefill latency of 𝑄2. The average prefill latency with caching is calculated as
follows:

Prefill Latency = Miss Rate × Full Prefill Latency + (1 −Miss Rate) × Cache Hit Latency. (1)

Miss rate. Cache performance is primarily driven by the miss rate, which is directly affected by
the retrieval pattern. For example, a 100% miss rate occurs when each request retrieves a unique
document, making caching intermediate states of retrieved documents meaningless. We analyze
the retrieval patterns in four representative question-answering datasets for RAG: MMLU [27],
Google Natural Questions [28], HotpotQA [29], and TriviaQA [30]. Using the text-embedding-
3-small model [31] from OpenAI [32], we convert Wikipedia documents to vectors for retrieval,
with top-1 document retrieval based on FlatL2 ANN index, i.e., exact search on the entire dataset
with Euclidean distance. Figure 5 shows the CDF of accessed documents, revealing a skewed
retrieval pattern where a small fraction of documents accounts for most retrieval requests. In
MMLU, for example, 60% of requests refer to just 3% of documents, which is 20× less than the
uniform distribution. This observation suggests a low miss rate to cache the frequently accessed
documents.

Further analysis on additional embedding models and ANN indexes (vector search algorithms) is
shown in Figure 6. All results exhibit a similar retrieval pattern regardless of which embedding
model or ANN index is used. The results are consistent with FlatL2 index, which indicates the
potential for caching optimization under different settings.

We also validate our findings using a production RAG dataset from Company-X, a leading LLM
service provider, which we refer to as Dataset-X. Dataset-X consists of hundreds of documents
in a knowledge base designed to assist internal employees in answering questions about service
details. Over the course of several days, we collected hundreds of user requests and analyzed the
retrieval patterns. Like the public datasets, Dataset-X exhibits a skewed retrieval pattern, with 2%
of documents account for 60% of requests.
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Full prefill computation. To quantify full computation, we compare the LLM prefill latency
with and without caching partial intermediate states (i.e., key-value cache of prefixes). We set the
original request length to 32 tokens and vary the prefix length from 128 to 4,096 tokens. Figure 7
illustrates that caching significantly reduce the prefill latency. When cached, only the request
tokens’ key-value tensors are computed, while full prefill computation requires to calculate the
key-value tensors for the entire sequence. The full prefill latency is up to 11.5× longer than that
with cached prefix, highlighting the substantial performance improvement achieved by caching
intermediate states of accessed documents.

Cache hit.The cache hit comprises two parts: prefill computation of request tokens and loading the
key-value cache of retrieved documents. The former is negligible compared to miss penalty. As for
the latter one, the limited GPU memory contrasts sharply with the large size of the key-value cache
from retrieved documents. This discrepancy necessitates leveraging the host memory to extend
the caching system, accommodating a greater volume of documents. However, this introduces
a potential overhead: the transmission of key-value cache between the GPU and host memory.
Figure 7 shows the key-value cache transmission time for various prefix lengths. The cache hit
latency is the sum of the prefill time with cached prefix and the transmission time. Even with
the transmission overhead, the cache hit latency is up to 3.9× lower than the full prefill latency,
demonstrating the advantages of caching intermediate states of retrieved documents.

3.3 Opportunity 2: Retrieval-Generation Overlapping
For the data dependency between the retrieval and generation steps, the optimization opportunity
lies in the streaming behavior of vector search. Specifically, vector search algorithms like IVF [11]
and HNSW [12] typically maintain a queue of top-𝑘 candidate documents, which are ranked by
their similarity to the request. During the retrieval process, the top-𝑘 documents in the queue are
continuously updated i.e., some documents with greater similarity are inserted into the queue.
Interestingly, the final top-𝑘 documents emerge early in the retrieval step [23, 33]. We compare
the temporary search results with the final search results using MMLU as the request dataset and
Wikipedia as the document base. A request is actually finished when it reaches the final top-𝑘
documents. Figure 8 illustrates that 95% of requests are actually finished after completing 13% of
the search process. Since the vector search is processed on CPUs, this observation suggests that we
can start LLM generation with the temporary search results to utilize the idle GPU resources and
overlap the retrieval and generation steps.

4 RAGCache Overview
We present RAGCache, an RAG serving system designed to optimize the end-to-end latency.
RAGCache caches the key-value tensors of retrieved documents acrossmultiple requests tominimize
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redundant computation, and dynamically overlaps retrieval and LLM generation to minimize the
latency.

Architecture overview.We provide a brief overview of RAGCache in Figure 9. When a request
arrives, the RAG controller first retrieves relevant documents from the external knowledge database
and forwards them to the cache retriever to findmatching key-value tensors. If not found, RAGCache
directs the LLM inference engine to produce new tokens. Otherwise, the request and tensors are sent
to the inference engine, which uses a prefix caching kernel for token generation. After generating
the first token, the key-value tensors are relayed back to the RAG controller, which caches the
tensors from the accessed documents and refreshes the cache’s status. Finally, the generated answer
is delivered to the user as the response.

Cache retriever.The cache retriever efficiently locates the key-value tensors for documents stored
in the in-memory cache, utilizing a knowledge tree to organize these tensors. This tree, structured
as a prefix tree based on document IDs, aligns with the LLM’s position sensitivity to the document
order. Each path within this tree represents one specific sequence of documents referenced by
a request, with each node holding the key-value tensor of a referred document. Different paths
may share the same nodes, which indicates the shared documents across different requests. This
structure enables the retriever to swiftly access the key-value tensors of documents in their specified
order.

RAG controller.The RAG controller orchestrates the interactions with some system optimizations
tailored for RAG. PGDSF policy is employed to minimize the cache miss rate. PGDSF calculates
a priority based on the frequency, size of key-value tensors, last access time, and prefix-aware
recomputation cost. The cache eviction is determined by the priority, which ensures the most
valuable tensors are retained. Cache-aware reordering schedules the requests to improve cache
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hit rate and prevent thrashing, while also ensuring request fairness to mitigate starvation issues.
Dynamic speculative pipelining and pipelined vector search is designed to overlap the knowledge
retrieval and LLM inference to minimize the latency. This optimization leverages the mid-process
generation of retrieval results to initiate LLM inference early.

5 RAGCache Design
In this section, we present the design of RAGCache. We first introduce the cache structure and
the prefix-aware replacement policy (Section 5.1). Then, we describe the cache-aware reordering
strategy to improve the cache hit rate (Section 5.2). Finally, we present the dynamic speculative
pipelining approach to overlap knowledge retrieval and LLM inference (Section 5.3).

5.1 Cache Structure and Replacement Policy
Different from traditional cache systems that cache individual objects, RAGCache caches the key-
value tensors of the retrieved documents that are sensitive to the referred order. For example,
consider two document sequences: [𝐷1, 𝐷3] with key-value tensors 𝐾𝑉 and [𝐷2, 𝐷3] with 𝐾𝑉 ′.
Although 𝐾𝑉 [1] and 𝐾𝑉 ′[1] both pertain to 𝐷3, they are different in values. This discrepancy
arises because the key-value tensor for a given token is generated based on the preceding tokens,
underscoring the order-dependence of key-value tensors.
To facilitate fast retrieval while maintaining the document order, RAGCache structures the

documents’ key-value tensors with a knowledge tree, as depicted in Figure 10. This tree assigns
each document to a node, which refers to the memory addresses of the document’s key-value
tensors. Following vLLM [6], RAGCache stores the key-value tensors in non-continuous memory
blocks for KV cache reuse. The root node 𝑆 denotes the shared system prompt. A path from the
root to a particular node represents a sequence of documents.

The knowledge tree indirection leverages vLLM’s page allocation mechanism. Instead of replicat-
ing the actual KV cache, each node in the knowledge tree–representing a single document–stores
only the metadata of the corresponding KV cache pages, such as their indices. Consequently, inser-
tion and eviction operations on the tree only involve modifying this metadata, thereby avoiding
costly data transfers between GPU and host memory.
This design inherently allows RAGCache to serve multiple requests simultaneously through

overlapping paths in the tree. RAGCache retrieves tensors by prefix matching along these paths.
During the prefix matching process, if a subsequent document is not located among the child
nodes, the traversal is promptly terminated, and the identified document sequence is returned. This
method ensures efficiency with a time complexity of 𝑂(ℎ), where ℎ represents the tree’s height.

Prefix-aware Greedy-Dual-Size-Frequency (PGDSF) replacement policy.With the knowledge
tree, RAGCache has to decide each node’s placement within a hierarchical cache. Nodes that are
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Fig. 11. Cost estimation in PGDSF.

accessed more frequently are ideally stored in GPU memory for faster access speeds, while those
accessed less often are allocated to the slower host memory or simply freed. To optimize node
placement, RAGCache employs a PGDSF replacement policy, which is based on the classic GDSF
policy [34]. Unlike traditional caching strategies such as LRU, which neglect the variable sizes of
documents, PGDSF evaluates each node based on its access frequency, size, and access cost. This
method utilizes limited storage capacity by maintaining the most beneficial nodes, whose priority
is defined as follows:

Priority = Clock +
Frequency × Cost

Size
. (2)

Nodes with lower priority are evicted first. Clock tracks node access recency. We maintain two
separate logical clocks in the RAG controller for GPU and host memory, respectively, to adapt to
the cache hierarchy. Each clock starts at zero and updates with every eviction. When a document is
retrieved, its node’s clock is set and its priority is adjusted. Nodes with older clock, indicating less
recent use, receive lower priorities. Let 𝐸 be the set of evicted nodes in one eviction operation. The
clock is updated accordingly:

Clock = max
𝑛∈𝐸

Priority(𝑛). (3)

Frequency represents the total retrieval count for a document within a time window. This count is
reset to zero upon system start or cache clearance. The priority is proportional to the frequency,
and thus more frequently accessed documents have higher priorities. Size reflects the number of
tokens in a document post-tokenization, directly influencing the memory required for its key-value
tensors. Cost , defined as the time taken to compute a document’s key-value tensors, varies with
GPU computational capacity, document size, and the sequence of preceding documents.
PGDSF achieves prefix awareness for RAG systems in two aspects: 𝐶𝑜𝑠𝑡 estimation and node

placement. Unlike GDSF, where costs are straightforward (e.g., object size in web caching), RAG
costs involve complex LLM generation dynamics. For example, Figure 11 shows varying costs
incurred by the same request denoted as [𝑆, 𝐷1, 𝐷2, 𝑄]. To estimate the cost for 𝐷2, directly using
the cost where [𝑆, 𝐷1] is cached or only 𝑆 is cached is imprecise. Besides, the latter case’s cost also
includes the time to compute the key-value tensors for 𝐷1 and 𝑄. PGDSF addresses this problem by
replacing 𝐶𝑜𝑠𝑡/𝑆𝑖𝑧𝑒 in Formula (2) as follows:

Cost
Size

=
1
𝑚

𝑚
∑
𝑖=1

Cost 𝑖
NewSizei

, (4)
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ALGORITHM 1: Knowledge Tree Operations
1: function UPDATE_NODE_IN_GPU(𝑛𝑜𝑑𝑒, 𝑖𝑠_𝑐𝑎𝑐ℎ𝑒𝑑, 𝛼, 𝛽)
2: // 𝛼 and 𝛽 are cached and non-cached sizes of the request
3: 𝑛𝑜𝑑𝑒.𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ← 𝑛𝑜𝑑𝑒.𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 1
4: if 𝑖𝑠_𝑐𝑎𝑐ℎ𝑒𝑑 is false then
5: // Bilinear interpolation to estimate the cost
6: Find 𝛼𝑙 < 𝛼 < 𝛼ℎ and 𝛽𝑙 < 𝛽 < 𝛽ℎ from the profiler
7: 𝑇 (𝛼, 𝛽) ← BILINEAR(𝑇 (𝛼𝑙, 𝛽𝑙), 𝑇 (𝛼𝑙, 𝛽ℎ), 𝑇 (𝛼ℎ, 𝛽𝑙), 𝑇 (𝛼ℎ, 𝛽ℎ))
8: UPDATE_AVG_COST(𝑛𝑜𝑑𝑒, 𝑇 (𝛼, 𝛽))
9: 𝑛𝑜𝑑𝑒.𝑃𝑟 𝑖𝑜𝑟 𝑖𝑡𝑦 ← 𝐶𝑙𝑜𝑐𝑘 + 𝑛𝑜𝑑𝑒.𝐴𝑣𝑔𝐶𝑜𝑠𝑡 × 𝑛𝑜𝑑𝑒.𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
10:
11: function EVICT_IN_GPU(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒)
12: 𝐸 ← ∅ // Evicted nodes in GPU
13: 𝑆 ← {𝑛 ∈ 𝐺𝑃𝑈 ∧ 𝑛.𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∉ 𝐺𝑃𝑈 } // Leaf nodes in GPU
14: while∑𝑛∈𝐸

𝑛.𝑆𝑖𝑧𝑒 < 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 do
15: 𝑛 ← argmin𝑛∈𝑆 𝑛.𝑃𝑟 𝑖𝑜𝑟 𝑖𝑡𝑦
16: 𝐸 ← 𝐸 ∪ {𝑛}
17: 𝐶𝑙𝑜𝑐𝑘 ← max{𝐶𝑙𝑜𝑐𝑘, 𝑛.𝑃𝑟 𝑖𝑜𝑟 𝑖𝑡𝑦}
18: if 𝑛.𝑃𝑎𝑟𝑒𝑛𝑡.𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∉ 𝐺𝑃𝑈 then
19: 𝑆 ← 𝑆 ∪ {𝑛.𝑃𝑎𝑟𝑒𝑛𝑡}

where 𝑚 is the number of requests that access the document but do not have the document
cached. Cost 𝑖/NewSizei represents the compute time per non-cached token for the 𝑖th request. Such
estimation inherently considers the document size by amortizing the cost to all non-cached tokens.
As for Costi , RAGCache profiles the LLM prefill time with varying cached and non-cached token
lengths offline and uses bilinear interpolation to estimate the cost for a given request. Document
retrieval triggers an update in node frequency, cost estimation and clock within the knowledge
tree, or initiates a new node for documents not previously cached.

PGDSF orchestrates node placement in the knowledge tree, which is divided into GPU, host, and
free segments, as illustrated in Figure 10. Nodes in GPU memory serve as parent nodes to those in
host memory, establishing a hierarchical structure. RAGCache dynamically manages node eviction
across these segments for efficiency. Specifically, when the GPU memory is full, RAGCache swaps
the least priority node in leaf nodes to the host memory. RAGCache applies a similar process for
host memory oversubscription. This eviction strategy upholds the tree’s hierarchical partitioning,
which is pivotal for aligning with the memory hierarchy and prefix sensitivity in LLM generation. A
node relies on its parent node for key-value tensor calculation, emphasizing the need for prioritizing
parent node placement for rapid retrieval.
Algorithm 1 outlines the operations for updating and evicting nodes in the GPU memory of

the knowledge tree. 𝑇 (𝛼, 𝛽) represents the estimated compute time for a request with 𝛼 cached
tokens and 𝛽 non-cached tokens. Upon a document retrieval by a request, RAGCache updates the
cost using bilinear interpolation (Line 6–9) if the document is not cached, EVICT_IN_GPU evicts
nodes from the GPU memory to accommodate new requests and updates the clock according to
Formula (3). If a parent node becomes a leaf following eviction, it is added to the candidate set 𝑆.

Swap out only once.The GPU connects to the host memory via the PCIe bus, which has signifi-
cantly lower bandwidth than GPU HBM. To reduce data transfers, RAGCache adopts a swap-out-
only-once strategy as shown in Figure 10. The key-value tensors of a node are swapped out to the
host memory only on the first eviction and remain there until fully removed from the cache. For
subsequent evictions in GPU memory, RAGCache directly frees the node without data copy. Since
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Fig. 12. Cache-aware reordering.

host memory is typically one to two orders of magnitude larger than GPU memory, keeping one
copy of the key-value tensors in host memory is efficient and acceptable.

Multi-level eviction. When an incoming request necessitates the eviction of data from GPU
memory, two scenarios are considered. First, if the victim node has already been backed up to host
memory (per our swap-out-only-once strategy), the eviction simply requires freeing this node in
the knowledge tree. Alternatively, if the host memory is also at capacity, a node must be evicted
from the host as well, following a procedure similar to the EVICT_IN_GPU function detailed in
Algorithm 1.

Critically, these eviction operations are highly efficient. As they only involve manipulating
metadata within the knowledge tree, the physical memory pages holding the evicted KV cache
are immediately made available for the new request without any data copying. Our evaluation in
Section 7.5 confirms that the scheduling overhead for this process is under one millisecond, an
amount, that is, negligible compared to the overall request processing time.

5.2 Cache-aware Reordering
Cache hit rate is vital for RAGCache’s cache efficiency, yet the unpredictable arrival pattern of user
requests results in substantial cache trashing. The requests referring to the same documents may
not be issued together, affecting cache efficiency. For illustration, let requests {𝑄𝑖, 𝑖%2 == 0} and
{𝑄𝑖, 𝑖%2 == 1} target documents 𝐷1 and 𝐷2, respectively. The cache capacity is one document. The
sequence {𝑄1, 𝑄2, 𝑄3…} causes frequent swapping of the key-value cache of 𝐷1 and 𝐷2, rendering
a zero cache hit rate. Conversely, rearranging requests to {𝑄1, 𝑄3, 𝑄5, 𝑄2, 𝑄4, 𝑄6, 𝑄7, …} optimizes
cache utilization, which improves the hit rate to 66%.This exemplifies how strategic request ordering
can mitigate cache volatility and enhance cache efficiency.
Before introducing the cache-aware reordering algorithm, we first consider two scenarios to

illustrate the key insights. We assume that the recomputation cost is proportional to the recom-
putation length in this example. The first scenario (Figure 12(a)) considers requests with identical
recomputation demands but varying cached context lengths, under a cache limit of four. With an
initial order of {𝑄1, 𝑄2}, the system must clear 𝑄2’s cache space to accommodate 𝑄1’s computation,
then reallocate memory for 𝑄1’s processing. It effectively utilizes 𝑄1’s cache while discarding 𝑄2’s.
This results in a total computation cost of 2 + 1 + 2 = 5. Conversely, ordering as 𝑄2, 𝑄1 utilizes
𝑄2’s cache but discards 𝑄1’s, which increases computation to 2 + 2 + 2 = 6. Thus, cache-aware
reordering advocates prioritizing requests with larger cached contexts to enhance cache efficiency,
as they bring larger benefits.

In the second scenario (Figure 12(b)), we examine requests with identical cached context lengths
but varying recomputation demands, given a cache capacity of five. For a sequence {𝑄1, 𝑄2},
the system must clear 𝑄2’s cache to allocate space for 𝑄1’s computation, given only one available
memory slot.This necessitates recomputing 𝑄2 entirely, resulting in a computation cost of 2+2+1 =
5. In contrast, the sequence {𝑄2, 𝑄1} allows for direct computation of 𝑄2 due to adequate cache
availability. It reduces the total computation to 2+1 = 3. Hence, cache-aware reordering is beneficial
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Fig. 13. Speculative pipelining.

when it prioritizes requests with shorter recomputation segments, as this approach minimizes the
adverse effects on cache efficiency.
Drawing from these insights, we introduce a cache-aware reordering algorithm aimed at im-

proving cache efficiency. RAGCache employs a priority queue for managing incoming requests,
prioritizing them based on their impact on cache performance. Specifically, requests are selected
for processing based on a priority metric, defined as:

OrderPriority =
Cached Length

Computation Length
.

This formula prioritizes requests that are likely to enhance cache efficiency—those with a larger
cached portion relative to their computation needs. By adopting this cache-aware reordering,
RAGCache increases the cache hit rate and decreases the total computation time, optimizing
resource use and system performance. To avoid starvation, RAGCache sets a window for each
request to ensure that all requests are processed no later than the window size.

5.3 Dynamic Speculative Pipelining
As we discuss in Section 3.3, the vector search time is determined by the knowledge base size and
user configurations. If the vector database grows to a larger scale or the retrieving requires a higher
accuracy, the retrieval step may incur a substantial latency. To mitigate the impact of retrieval
latency, RAGCache employs dynamic speculative pipelining to overlap knowledge retrieval and
LLM inference. The key insight behind this technique is that the vector search may produce the
final results early in the retrieval step, which can be leveraged by LLM for speculative generation
ahead of time.
Based on this observation, RAGCache introduces a speculative pipelining strategy that splits a

request’s retrieval process into several stages. In each stage, RAGCache ticks the vector database
to send the candidate documents to the LLM engine for speculative generation. Then, the LLM
engine starts a new speculative generation and terminates the previous generation if the received
documents are different from the previous ones. If there is no difference, the LLM engine remains
processing the previous generation. When the final top-𝑘 documents are produced, RAGCache
sends the final results to the LLM engine. At this moment, the LLM engine returns the results of
the latest speculative generation to users if it matches the final top-𝑘 documents. Otherwise, the
LLM engine performs re-generation to ensure the correctness of the results.
As shown in Figure 13, we split the retrieval process into four stages. The top-2 documents in

candidate queue are [𝐷1, 𝐷3], [𝐷1, 𝐷2], [𝐷1, 𝐷2], and [𝐷1, 𝐷2] in the four stages. After stage one
is finished, RAGCache sends [𝐷1, 𝐷3] to the LLM engine for speculative generation. When stage
two is finished, RAGCache sends [𝐷1, 𝐷2] to the LLM engine. The LLM engine finds that [𝐷1, 𝐷3]
are different from [𝐷1, 𝐷2], and thus terminates the previous speculative generation and starts a
new one. As for stage three, the LLM engine receives the same documents as stage two, and thus
remains processing the previous generation. After the final stage, RAGCache sends the final top-2
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documents to the LLM engine which is the same as the latest speculative generation. The LLM
engine directly returns the speculative generation results to users.
Notably, RAGCache leverages the knowledge tree to retain the longest common document

prefix when reconciling different speculative generations, thereby minimizing recomputation
overhead. For example, as illustrated in Figure 13, when [𝐷1, 𝐷2] is received after [𝐷1, 𝐷3], the
node representing 𝐷3 is pruned from the tree. However, the KV cache associated with the common
prefix, 𝐷1, is retained. Consequently, the LLM engine can resume generation efficiently from this
shared point without recomputing 𝐷1’s KV cache.

Pipelined vector search. The prerequisite for speculative pipelining is enabling pipelined vector
search in the retrieval step, meaning the vector search must be divided into multiple stages and
produce intermediate results at the end of each stage. Figure 14 shows two widely-used vector
search algorithms: IVF [11] and HNSW [12]. IVF partitions the vector space into multiple clusters
and stores vectors within them. During search, IVF first locates the top-𝑛 closest clusters to the
request vector and subsequently searches within these clusters. HNSW constructs multi-layer
graphs to map the vector space, connecting vectors with edges based on similarity. HNSW searches
the vectors by traversing the graph, maintaining a candidate list of the top-𝑘 nearest vectors. These
algorithms exhibit different search characteristics: IVF operates in discrete stages (i.e., searching
clusters one by one) while HNSW has a continuous search process. To support pipelined vector
search, we adapt their search methods. For stage-based algorithms like IVF, we split the search into
multiple stages, each processing a subset of clusters and returning the current top-𝑘 vectors. For
continuous algorithms like HNSW, we measure the average search time for a given configuration
and divide the entire time into smaller time slices. After each time slice, the current top-𝑘 vectors
are returned. These modifications facilitate dynamic speculative pipelining while preserving the
integrity of the final search results.

Dynamic speculative generation. The speculative pipelining allows RAGCache to overlap the
retrieval and generation steps, which reduces the end-to-end latency of RAG systems. However, it
may introduce extra LLM computation as some speculative generations are incorrect, potentially
leading to performance degradation under high system loads. To address this problem, RAGCache
dynamically enables speculative pipelining based on the system load.

We begin with a simplified analysis to show how to minimize end-to-end latency while managing
system load. For simplicity, we assume both the vector search and LLM handle one request at a
time. The vector search produces candidate results at the end of each stage at fixed intervals, much
shorter than LLM generation time. Since the batch size is one, any incorrect speculative generation
can be terminated immediately. In this case, the optimal strategy is simple: if a stage ends with
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ALGORITHM 2: Dynamic Speculative Pipelining Strategy
1: function DYNAMIC_SPECULATIVE_PIPELINING(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
2: 𝐷 ← []
3: while the vector search of 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is not finished do
4: // Produce the candidate documents at the next stage
5: 𝐷𝑡𝑒𝑚𝑝 ← VECTOR_SEARCH(𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝐷)
6: if 𝐷𝑡𝑒𝑚𝑝 ≠ 𝐷 then
7: if {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝐷} in 𝑞𝑢𝑒𝑢𝑒 then
8: Terminate {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝐷} after the current iteration
9: if 𝑞𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒 < 𝑚𝑎𝑥_𝑝𝑟𝑒𝑓 𝑖𝑙𝑙_𝑏𝑠 then
10: 𝑞𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟 𝑡({𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝐷𝑡𝑒𝑚𝑝})
11: 𝐷 ← 𝐷𝑡𝑒𝑚𝑝

different results, stop the current speculative generation (if any) and start a new one, as there is no
termination cost.

The general RAG system is much more complex with parallel vector search and larger LLM batch
sizes. We cannot immediately terminate speculative generations since they may be correct for
other requests and the termination cost is non-negligible with batching. To handle this, we design
a dynamic speculative pipelining strategy in Algorithm 2. The main idea is to start a speculative
generation only if the retrieved documents change and the number of pending LLM requests falls
below a predetermined maximum batch size for the prefill iteration (𝑚𝑎𝑥_𝑝𝑟𝑒𝑓 𝑖𝑙𝑙_𝑏𝑠). The maximum
prefill batch size is determined by the smaller number of tokens that can either fit within the GPU
memory or fully utilize the GPU compute capabilities (i.e., streaming multiprocessors, SMs). The
strategy terminates the incorrect speculative generation after the current LLM iteration, which
does not affect other requests in the batch. This strategy overlaps the retrieval and generation steps
as much as possible while gauging the system load.
Dynamic speculative pipelining is orthogonal to, and fully integrated with, existing batching

optimizations such as continuous batching [35] and chunked prefill [36]. The integration operates
as follows. First, we assign a common speculative generation ID to all speculative generations
originating from the same RAG request. At the end of each LLM generation iteration, the scheduler
examines these IDs. If a speculative generation is found to be incorrect, it is terminated and removed
from the batch using the same mechanism that handles sequences reaching their end-of-sequence
(<eos>) token in continuous batching. For compatibility with chunked prefill, this process is adapted
to handle the termination of partially-completed prefill requests. RAGCache retains the KV cache
corresponding to the longest common document prefix that has already been processed, thereby
maximizing computational reuse and ensuring no work is wasted.

5.4 Discussion and Limitations
Time between tokens (TBT). In addition to TTFT, TBT is a crucial metric in LLM serving to
assess the token streaming speed [37, 38]. RAG augments the request with external documents,
significantly increasing the input length and thus the prefill latency, i.e., TTFT. Consequently, the
primary concern for RAG systems is the prolonged TTFT [39]. RAGCache reduces TTFT by caching
the KV cache of frequently retrieved documents. With RAGCache, TBT can be reduced or at least
not worsen, as decoding iterations are less likely to be blocked by shorter prefill iterations. We
evaluate RAGCache’s TBT performance in Section 7.2.

Large top-𝑘. As the top-𝑘 value increases, the number of document permutations grows factorially,
reducing the likelihood of reuse. The key insight to mitigate this issue is that the top-𝑘 documents
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are exactly the first 𝑘 documents in the top-𝑘′ set, where 𝑘 < 𝑘′ (e.g., the top-2 documents are the
same as the first two documents in top-5 documents), and caching only the first few documents
can also lead to a considerable reduction in latency. Therefore, RAGCache caches documents with a
lower top-𝑘 value (e.g., top-2) to balance the hit rate and cache efficiency. We perform an experiment
to evaluate the impact of the top-𝑘 value on system performance in Section 7.3.

LargeMoEmodels.As for more scaled-out MoEmodels like DeepSeek-V3 [40], RAGCache remains
applicable because it is designed to avoid the re-computation of shared prefixes. This core principle
is valid for all Transformer-based auto-regressive models, including MoE architectures. However,
the relative performance gain on MoE models may be less pronounced than on traditional dense
models, due to two primary considerations.
(𝑖) Diminished computational savings: MoE models leverage sparse expert activation, meaning

their prefix computation overhead is inherently lower than that of a dense model with a comparable
parameter count. Consequently, the absolute time saved by caching constitutes a smaller fraction
of the end-to-end latency.
(𝑖𝑖) Increased memory cost: MoE models are notoriously memory-intensive. Allocating additional

memory for a KV cache exacerbates this pressure, creating a trade-off between using memory to
reduce latency (via caching) versus using it to increase throughput (by supporting larger batch
sizes).

Internet-scale knowledge bases.The fundamental principles of our approach—namely, prefix-
aware caching and overlapping retrieval with prefill—are general and remain applicable to internet-
scale data. However, effectively supporting an internet-scale knowledge base would introduce new
system-level challenges. First, it would necessitate a more expansive KV cache storage solution,
likely a multi-level hierarchy spanning GPU memory, host memory, and SSDs (e.g., Mooncake [41]).
Furthermore, at that scale, the latency of billion-scale vector search would become the dominant
bottleneck, far surpassing the prefill computation time, which would itself require significant
optimization. Recent work, Hermes [42], stores the data across multiple nodes and performs relaxed
parallel retrieval to improve efficiency, which can be integrated with RAGCache for internet-scale
RAG applications.

Deployment at scale. As the escalation of LLMs and the knowledge bases, RAG applications
increasingly require distributed deployments. Such at-scale deployments create a pressing need
for efficient communication, not only for the data transfer between the retrieval and generation
stages but also for the collective communications [43, 44] required within the distributed generation
procedure itself.
As discussed in Section 2, RAG workflows are typically composed of offline processing and

online inference phases. While many applications focus on real-time serving, offline RAG inference
tasks also exist, such as Deep Research [45] proposed by OpenAI. In production environments,
developing strategies for the efficient sharing [46, 47] of these online and offline workloads could
significantly enhance resource utilization. We leave these studies as future work.

6 Implementation
We implement a system prototype of RAGCache with ∼5000 lines of code in C++ and Python. Our
implementation is based on vLLM [6] and Faiss [13]. We extend its prefill kernel in Pytorch [48]
and Triton [49] to support prefix caching for different attention mechanisms, e.g., multi-head
attention [8] and grouped-query attention [50].

Fault tolerance. We implement two fault-tolerant mechanisms in RAGCache to handle GPU
failures and request processing failures. The GPU memory serves as RAGCache’s first-level cache,
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Table 1. Models used in the Evaluation

Model Layers Q/KV Heads MoE Model Size KV Size
Mistral-7B 32 32/8 no 14 GiB 0.125 MiB/token
Llama2-7B 32 32/32 no 14 GiB 0.5 MiB/token
Mixtral-8×7B 32 32/8 yes 96.8 GiB 0.125 MiB/token
Llama2-70B 80 64/8 no 140 GiB 0.3125 MiB/token

storing the KV cache of the upper-level nodes in the knowledge tree hierarchy. Given the prefix
sensitivity of LLM inference, a GPU failure would invalidate the lower-level nodes and therefore
the entire tree. We replicate a portion of the most frequently accessed upper-level nodes (e.g., the
system prompt) in the host memory for fast recovery. We also employ a timeout mechanism to
retry the failed requests. If a request fails before completing its first iteration, it will be recomputed.
Otherwise, the request can continue computation by reusing the stored KV cache.

7 Evaluation
In this section, we evaluate RAGCache from the following aspects: (𝑖) overall performance against
state-of-the-art approaches on open-source and production datasets; (𝑖𝑖) performance under general
settings; (𝑖𝑖𝑖) ablation studies; and (𝑖𝑣) scheduling time of RAGCache.

Testbed. Most of our experiments are conducted on AWS EC2 g5.16xlarge instances, each with 64
vCPUs (AMD EPYC 7R32), 256 GiB host memory, and 25 Gbps NIC. Each instance is configured
with one NVIDIA A10G GPU with 24 GiB memory and the GPU is connected to the host via PCIe
4.0×16. We run experiments with 7B models on a single g5.16xlarge instance and use 192 GiB host
memory for caching unless otherwise stated. For large models, we use two NVIDIA H800 GPUs,
each with 80 GiB memory and interconnected by NVLink. The two GPUs are connected to the host
via PCIe 5.0×16. We use 384 GiB host memory for caching in this case.

Models.We evaluate RAGCachewith the Llama2 chatmodels [25] and theMistral AImodels [51, 52].
The model details are listed in Table 1. Most of the experiments are conducted with Mistral-7B
and Llama2-7B. The two models have the same size but employ different attention mechanisms,
i.e., grouped-query attention and multi-head attention. We also evaluate RAGCache with large
models, Mixtral-8×7B and Llama2-70B, to demonstrate the scalability of RAGCache. Mixtral-8×7B
is amixture-of-experts (MoE) model with eight experts, and two experts are activated for each
token. We deploy the large models on two H800 80GB GPUs for tensor parallelism and expert
parallelism.

Open-source datasets.We use the Wikipedia dataset discussed in Section 3.2 as the knowledge
base. For vector search, we use the IVF index with 1024 clusters and set the default top-𝑘 to 2.
We deploy the vector database with four separate vCPUs and 30 GiB host memory on the same
instance as the GPU and expose a RESTful API for document retrieval. Our evaluation uses two
representative QA datasets, MMLU [27] and Natural Questions [28], to generate requests. MMLU
is a multi-choice knowledge benchmark where the LLM outputs a single token (A/B/C/D) per
question. Natural Questions comprises anonymized questions from Google Search and provides
the reference answers for each question. For Natural Questions, we sample the output length for
each question from the token length distribution of the reference answers. The average output
length is 6 tokens, and 99% of the answers contain no more than 32 tokens. We sample a subset of
the questions from the dataset, respecting the document retrieval distribution in Section 3.2, and
randomly shuffle the questions to generate one-hour workloads. In line with prior work [6, 53], we
assign the arrival time for each request using a Poisson process parameterized by the arrival rate.
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Fig. 15. Overall performance on MMLU and Natural Questions, using Mistral-7B and Llama2-7B as the
models.

Production dataset.We also evaluate RAGCache with the production RAG dataset, Dataset-X,
discussed in Section 3.2. Dataset-X has relatively long output lengths. It assists internal users at
Company-X with their daily tasks. We use an internal knowledge base as the retrieval database
and collect hundreds of user requests over the span of several days to form Dataset-X.

Metrics.We report the average TTFT as the main metric and measure the average TBT for datasets
with long outputs [37, 38]. System throughput is also evaluated, defined as the request rate the
system can handle while keeping TTFT below a threshold, such as 5× the TTFT at the lowest
request rate [54]. Additionally, we assess cache hit rate in the ablation study.

Baselines.We compare RAGCache with two baselines.
— vLLM [6], a state-of-the-art LLM serving system that supports iteration-level scheduling [35]
and uses PagedAttention [6] to reduce memory fragmentation.

— SGLang [5], a high-performance LLM serving system that allows KV cache reuse across
different requests in GPU memory and employs LRU as the replacement policy.

For fair comparison, the baselines are configured with the same model parallelism, maximum batch
size, and vector database settings as RAGCache.

7.1 Overall Performance
We first compare the overall performance of RAGCache against the baselines. We use MMLU and
Natural Questions as the workloads and Mistral-7B and Llama2-7B as the models. The maximum
batch size is set to four. We vary the request rate and measure the average TTFT. Figure 15 shows
the results on MMLU and Natural Questions, which we summarize as follows.

— RAGCache reduces the average TTFT by 1.2–4× compared to vLLM and 1.1–3.5× compared to
SGLang under the same request rate. This is because RAGCache utilizes the GPU memory and
host memory to cache the KV cache of hot documents and avoids frequent recomputation.

— Due to faster request processing, RAGCache achieves 1.3–2.1× higher throughput than vLLM
and 1.2–1.8× higher throughput than SGLang.

— RAGCache outperforms the baselines across models with varying attention mechanisms on
different datasets.

The results also reflect the differences between the models and datasets. The performance gap
between RAGCache and vLLM is greater for Mistral-7B than for Llama2-7B. This is because Llama2-
7B has a KV cache size 4× that of Mistral-7B for the same token count, resulting in a lower cache
hit rate for Llama2-7B with the same cache size. According to our characterization in Section 3.2,
MMLU benefits more from document caching than Natural Questions, with a wider performance
improvement for MMLU than for Natural Questions. SGLang performs closely to vLLM for Natural
Questions because the limited GPU memory restricts document locality. RAGCache, however, with
its multilevel caching and the adapted knowledge tree, outperforms in both datasets.
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Fig. 16. Average TTFT on Dataset-X.
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Fig. 17. Average TBT on Dataset-X.

7.2 Benefits for Real-World Production Datasets
We then evaluate the performance of RAGCache on the production dataset, Dataset-X, which is
collected from the internal RAG application at Company-X. Dataset-X features relatively longer
outputs compared to the other two datasets, with an average output length nearing 100 tokens.
Figure 16 illustrates that RAGCache achieves a 1.9–2.6× reduction in TTFT compared to vLLM
and a 1.2–2.1× reduction against SGLang, while improving throughput by 1.2× over the baselines.
As mentioned in Section 5.4, due to long sequence injections, TTFT is the main concern for RAG
systems [39]. In addition to TTFT, we also report the average TBT to assess the effectiveness of
RAGCache in token streaming speed as shown in Figure 17. RAGCache consistently achieves lower
average TBT than both vLLM and SGLang, regardless of load conditions. This is because RAGCache
processes requests faster with knowledge caching, reducing the likelihood of decoding iterations
being blocked by prefill iterations.

7.3 Case Study
We conduct two case studies to demonstrate the benefits of RAGCache over the baselines under
general settings. We use MMLU and Mistral-7B in the case studies.

Different top-𝑘 values. Users may have varying requirements for the number of retrieved docu-
ments. We evaluate the performance of RAGCache and the baselines with commonly used top-𝑘
values: 1, 3, and 5. We set the maximum batch size to four and truncate the documents in the
top-5 experiment to fit within GPU capacity limits. Figure 18 shows that RAGCache outperforms
vLLM by 1.7–3.1× and SGLang by 1.2–2.5× in average TTFT across these top-𝑘 values. Despite the
factorial growth in document permutations with increasing top-𝑘 values, RAGCache maintains
its advantage by caching frequently-used documents. This is because the knowledge tree always
evicts the node furthest from the root, ensuring that the most frequently used prefixes remain in
the cache.
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Fig. 18. Performance with different top-𝑘 values.
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Fig. 19. Performance under large models.

Large models.The second case study evaluates RAGCache with larger models using MMLU as the
workload. We deploy Mixtral-8×7B and Llama2-70B on two H800 80GB GPUs. For each model, we
set the maximum batch size to the lesser of what fits in GPU memory or fully utilizes the SMs (e.g.,
8 for Mixtral-8×7B and 4 for Llama2-70B). Figure 19 shows that under low request rates, RAGCache
reduces the average TTFT by 1.4–2.1× compared to vLLM. SGLang performs better on H800 than
on A10G GPUs due to increased GPU memory for caching, but RAGCache still surpasses SGlang
by 1.2–2.6× in average TTFT.

7.4 Ablation Study
Prefix-aware GDSF policy.We compare RAGCache with versions of RAGCache that use native
GDSF, LRU, and LFU as the replacement policy. For GDSF, we set the recomputation cost of a
document proportional to its size, which aligns with our profiling results in Figure 3. We vary the
host memory for caching from 8 GiB to 128 GiB, set the request rate to 0.8 req/s, and report the hit
rate and average TTFT. The hit rate for top-2 retrieval is defined as the ratio of hit documents to
retrieved ones. For example, if the cached document sequence is [𝐷1, 𝐷2] and the requested one is
[𝐷1, 𝐷3], the hit rate is 50%. Figure 20 shows the hit rates for MMLU and Natural Questions, and
Table 2 lists the average TTFT. PGDSF achieves the highest hit rates across different host memory
sizes, improving 1.02–1.32× over GDSF, 1.06–1.62× over LRU, and 1.06–1.75× over LFU, as it captures
the varying sizes, access patterns, and recomputation costs of different document prefixes. With
higher hit rates, RAGCache achieves 1.05–1.29× lower average TTFT than the baselines.

Cache-aware reordering.Then we evaluate the impact of cache-aware reordering. Reordering
works when the request queue is saturated. We set the request rate to 2.5 req/s for MMLU and 1.4
req/s for Natural Questions, which are slightly higher than the throughput of RAGCache. We set
the reordering window size to 32 and vary the host memory size from 16 GiB to 128 GiB. Figure 21
shows that RAGCache reduces the average TTFT by 1.2–2.1× with cache-aware reordering, which
demonstrates its effectiveness under high request rates.

Our reordering mechanism uses a scheduling window of 32 requests, which means the maximum
queueing length for any individual request is bounded by this size. The actual extent of reordering
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Table 2. Average TTFT (seconds) of Different Replacement Policies with Varying Host Memory Size

Host Memory
Size

MMLU Natural Questions
PGDSF GDSF LRU LFU PGDSF GDSF LRU LFU

8 GiB 1.38 1.68 1.78 1.81 2.85 3.35 3.41 3.36
16 GiB 1.32 1.55 1.61 1.63 2.50 2.89 2.92 2.98
32 GiB 1.23 1.45 1.50 1.49 2.00 2.09 2.25 2.20
64 GiB 1.06 1.27 1.28 1.29 1.32 1.47 1.56 1.55
128 GiB 0.83 0.98 1.01 1.03 0.78 0.92 0.95 0.95
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Fig. 20. Ablation study on cache replacement policy.
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Fig. 21. Ablation study on cache-aware reordering.

is typically smaller than this limit. Similar to most caching systems, user requests exhibit temporal
locality. Therefore, newly arriving requests often have a lower probability of a cache hit than
requests that are already at the head of the queue. Consequently, the likelihood of a reordering
event spanning the full window size is low.

Dynamic speculative pipelining. Finally, we evaluate the effectiveness of dynamic speculative
pipelining against a baseline, No Dynamic Speculative Pipelining (No DSP), which waits for
vector search completion before starting LLM generation. We adjust the proportion of vectors to
be searched, relative to the total number of vectors in the database (referred to as the vector search
ratio), ranging from 12.5% to 100%. Note that while the search accuracy increases with the vector
search ratio, the search time also extends. We use MMLU and Natural Questions as the workloads
and set the request rate to 0.1 req/s. Figure 22 demonstrates that RAGCache achieves up to 1.6×
TTFT reduction with dynamic speculative pipelining.

Note that the semantics of “speculative” in our dynamic speculative pipelining differ from its
use in speculative decoding [55]. The latter introduces randomness through modified rejection
sampling [55], resulting in a probabilistic acceptance rate (between 0 and 1) for each step. Our
dynamic speculative pipelining, in contrast, operates on deterministic vector search results where a
correct outcome is guaranteed, not probabilistic. Therefore, a more intuitive metric for our method’s
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Fig. 22. Ablation study on speculative pipelining.

Table 3. Average Non-Overlapping Vector Search Time Under different Settings

Vector Search
Ratio

MMLU Natural Questions
RAGCache No DSP RAGCache No DSP

12.5% 52.1 ms 78.5 ms 67.7 ms 105.8 ms
25% 59.2 ms 135.9 ms 72.9 ms 163.4 ms
50% 69.7 ms 243.7 ms 94.2 ms 282.5 ms
100% 97.4 ms 422.3 ms 145.0 ms 446.1 ms

effectiveness is the fraction of the total search process required to identify the correct final result.
Table 3 presents this comparison by measuring the average non-overlapping vector search time,
i.e., the duration that the vector search does not overlap with the LLM generation using the final
retrieval result, for RAGCache (𝑇1) against the baseline No DSP (𝑇2). Consequently, the ratio 𝑇1/𝑇2
represents the fraction of time required to secure the correct result with our method, while 1−𝑇1/𝑇2
quantifies the relative time savings achieved through dynamic speculative pipelining. For example,
for the MMLU query set where the retrieval step searches the entire dataset, RAGCache saved 76.9%
of the vector search time. Overall, dynamic speculative pipelining allows RAGCache to decrease
non-overlapping vector search time by 1.5–4.3× and leads to a lower TTFT.

7.5 Scheduling Time
We measure RAGCache’s scheduling time, including the time for knowledge tree lookup and
update, request reordering, and speculative pipelining decisions. Using MMLU as the workload and
Mistral-7B as the model, we range the request rate from 0.5 to 2 req/s. The scheduling time ranges
from 0.872 to 0.906 millisecond, which is negligible compared to the second-level TTFT.

8 Related Work
RAG. RAG [1, 2, 14–17] enhances the generation quality of LLMs by incorporating relevant knowl-
edge from external databases. Several works [14, 16, 17, 56] suggest iterative retrieval throughout
generation to further improve the response quality. RAGCache supports iterative retrieval by
treating the intermediate iterations as separate requests and caching the corresponding KV cache
of the documents.

Vector search. RAG systems convert user prompts into vectors and uses ANN indexes like IVF [11,
23, 24, 57] and graph indexes [12, 58, 59] for efficient and accurate similarity search. RAGCache
extracts the temporary search results for speculative LLM generation and thus pipelines the search
process with LLM inference.

KV cache management. KV cache is widely used to accelerate the decoding phase of LLM
inference [6, 35, 37, 53, 60]. Recent efforts aim to reduce the KV cache’s memory footprint by
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quantization [61], compression [62–64], and self-attention with a subset of tokens [60, 65]. These
methods introduce approximation to the generation process, while RAGCache preserves the exact
KV cache of documents without affecting generation quality. Inspired by virtual memory in operat-
ing systems, vLLM [6] manages the KV cache at page granularity and proposes PagedAttention to
prevent external fragmentation. RAGCache integrates the page-level management for KV cache
sharing and improves over vLLM by leveraging the characteristics of RAG to cache the KV cache
of the knowledge documents.

KV cache reusing. Recent efforts [5, 39, 66–68] propose to reuse the KV cache across requests to re-
duce redundant computation. Prompt Cache [66] allows flexible reuse of the same tokens at different
positions, while CacheGen [39] compresses the KV cache for efficient reuse. CacheBlend [68] uses
selective KV recomputation to fuse multiple pre-computed KV caches and intelligently recomputes
a small, critical fraction of them to restore the missing cross-attention information. These ap-
proaches may generate inaccurate responses due to the approximation of the KV cache. SGLang [5]
and ChunkAttention [67] identify the reusable KV cache in GPU memory. RAGCache leverages
RAG’s retrieval pattern and builds a multilevel caching system, leading to higher performance with
unchanged generation results.

RAG performance optimization. Recent efforts have introduced targeted optimizations for the
end-to-end RAG workflow. A concurrent work, TeleRAG [69], proposes lookahead prefetching
to optimize the retrieval step across the pre-generation, retrieval, and post-generation stages in
multi-turn RAG. It prefetches IVF clusters during pre-generation and employs a GPU-CPU hybrid
vector search to accelerate retrieval. Hermes [42] targets retrieval with trillion-scale datasets,
where retrieval becomes the primary bottleneck. It employs a distributed datastore for parallel
retrieval and uses a sampling-based hierarchical search for efficient retrieval with acceptable
algorithmic performance. Other works optimize RAG performance by leveraging novel hardware
architectures. HeterRAG [70] employs DIMM-based Processing-in-Memory (PIM) for the high-
memory-capacity retrieval stage and HBM-based PIM for the high-memory-bandwidth generation
stage. RAGX [71] targets the retrieval bottleneck in RAG that uses persistent storage by proposing
a programmable in-storage accelerator to co-locate computation (vector search) with data (vector
embeddings). RAGCache can be integrated with these solutions for further optimization in more
complex RAG scenarios.

9 Conclusion
We present RAGCache, a latency-optimized serving system tailored for RAG. Based on a detail RAG
system characterization, RAGCache employs a knowledge tree with a prefix-aware replacement
policy to minimize redundant computation in the LLM and a dynamic speculative pipelining mech-
anism to overlap the knowledge retrieval and LLM inference to minimize end-to-end latency. We
evaluate RAGCache with a variety of models on both open-source and production workloads. Ex-
perimental results show that RAGCache outperforms the state-of-the-art solution, vLLM integrated
with Faiss, by up to 4× on TTFT and 2.1× on throughput.
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