
MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with
Disaggregated Expert Parallelism

Ruidong Zhu*
§
, Ziheng Jiang*

†
, Chao Jin*

§
, Peng Wu

†
, Cesar A. Stuardo

†
, Dongyang Wang

†
, Xinlei

Zhang
†
, Huaping Zhou

†
, Haoran Wei

†
, Yang Cheng

†
, Jianzhe Xiao

†
, Xinyi Zhang

†
, Lingjun Liu

†
,

Haibin Lin
†
, Li-Wen Chang

†
, Jianxi Ye

†
, Xiao Yu

†
, Xuanzhe Liu

§
, Xin Jin

§
, Xin Liu

†
§School of Computer Science, Peking University †ByteDance

Abstract
Mixture-of-Experts (MoE) showcases tremendous potential to scale

large language models (LLMs) with enhanced performance and re-

duced computational complexity. However, its sparsely activated ar-

chitecture shifts feed-forward networks (FFNs) from being compute-

intensive to memory-intensive during inference, leading to substan-

tially lower GPU utilization and increased operational costs.

We present MegaScale-Infer, an efficient and cost-effective sys-

tem for serving large-scale MoE models. MegaScale-Infer disaggre-

gates attention and FFN modules within each model layer, enabling

independent scaling, tailored parallelism strategies, and heteroge-

neous deployment for both modules. To fully exploit disaggregation

in the presence of MoE’s sparsity, MegaScale-Infer introduces ping-
pong pipeline parallelism, which partitions a request batch into

micro-batches and shuttles them between attention and FFNs for

inference. Combined with distinct model parallelism for each mod-

ule, MegaScale-Infer effectively hides communication overhead and

maximizes GPU utilization. To adapt to disaggregated attention and

FFN modules and minimize data transmission overhead (e.g., token

dispatch), MegaScale-Infer provides a high-performance M2N com-

munication library that eliminates unnecessary GPU-to-CPU data

copies, group initialization overhead, and GPU synchronization.

Experimental results indicate that MegaScale-Infer achieves up to

1.90× higher per-GPU throughput than state-of-the-art solutions.

CCS Concepts
•Computer systems organization→Cloud computing; •Com-
puting methodologies→ Machine learning; • Networks→
Data center networks.

Keywords
Mixture-of-experts, distributed inference, collective communication

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1524-2/2025/09.

https://doi.org/10.1145/3718958.3750506

ACM Reference Format:
Ruidong Zhu, Ziheng Jiang, Chao Jin, PengWu, Cesar A. Stuardo, Dongyang

Wang, Xinlei Zhang, Huaping Zhou, Haoran Wei, Yang Cheng, Jianzhe Xiao,

Xinyi Zhang, Lingjun Liu, Haibin Lin, Li-Wen Chang, Jianxi Ye, Xiao Yu,

Xuanzhe Liu, Xin Jin, Xin Liu. 2025. MegaScale-Infer: Efficient Mixture-

of-Experts Model Serving with Disaggregated Expert Parallelism. In ACM
SIGCOMM 2025 Conference (SIGCOMM ’25), September 8–11, 2025, Coimbra,
Portugal. In ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3718958.3750506

1 Introduction
Large language models (LLMs), such as GPT-4 [59], Claude [25],

and Llama [38, 72, 73], have revolutionized the field of artificial

intelligence, demonstrating remarkable proficiency in numerous do-

mains. These models have not only enhanced existing technologies

like search engines [58] but have also paved the way for innovative

applications in areas like universal chatbots [3, 8] and programming

assistants [6, 9].

As the effectiveness of LLMs increasingly depends on the esca-

lation of model parameters, there is a growing imperative to scale

up these models [35, 49]. Due to the sparse activation architecture,

mixture-of-experts (MoE) models [52, 62] are a practical choice

for scaling. MoE dynamically routes input tokens to a subset of

feed-forward networks (FFNs), which are known as experts, rather

than engaging all FFNs (i.e., all parameters). This design enables

sub-linear scaling of required FLOPs as the number of experts and

model size increases, significantly reducing computational com-

plexity without compromising model quality.

Unfortunately, reduced computational complexity does not nec-

essarily translate into lower computational costs in practical serving

scenarios. This discrepancy arises from the mismatch between the

characteristics of LLM inference and the compute capabilities of

GPUs, a problem that becomes increasingly pronounced with grow-

ing MoE sparsity. Figure 1 demonstrates this issue. Specifically,

an LLM consists of multiple layers of attention and FFN modules.

During the decoding phase, which dominates the LLM inference

process [51], the GPU utilization of attention modules remains low

because they must access the intermediate states (i.e., key-value

cache) of all previous tokens. Conversely, FFN modules achieve

high GPU utilization as the number of tokens increases.

However, GPU memory limitations and response latency con-

straints impose an upper bound on the number of tokens that can

be processed simultaneously (i.e., batch size). For dense models,

which contain one FFN module per layer, this maximum batch size

allows the FFN to fully utilize the GPUs’ compute capabilities. In

MoE models, however, larger model sizes are often accompanied by

592

https://doi.org/10.1145/3718958.3750506
https://doi.org/10.1145/3718958.3750506
https://doi.org/10.1145/3718958.3750506
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718958.3750506&domain=pdf&date_stamp=2025-08-27

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

Attention FFN

(a) Dense model. (b) MoE. (c) MegaScale-Infer.

G
PU

 u
til

iz
at

io
n

Batch Size
max bs G

PU
 u

til
iz

at
io

n

Batch Size
max bs

G
PU

 u
til

iz
at

io
n

/ c
os

t

Batch Size
max bs

Figure 1: GPU utilization of Attention and FFN vs. batch size in dense model, MoE, and MegaScale-Infer during decoding.

more experts and higher sparsity, meaning that fewer tokens—less

than a quarter, or even an order of magnitude less—are assigned to

each expert within the same batch size. As depicted in Figure 1(b),

the increased sparsity lowers the GPU utilization of FFN modules,

rendering them no longer compute-intensive, and resulting in un-

necessary computational costs.

A natural solution is to disaggregate attention from the LLM

inference process and replicate attention modules to increase the

decoding batch size for FFN modules. This approach is adopted

by Infinite-LLM [54], which focuses on optimizing dense model

inference in long-context scenarios. In such cases, GPU memory

capacity, rather than sparsity, is the primary constraint, and the

communication pattern is relatively simple compared to the top-

𝑘 selection in MoE. Consequently, its solution is less effective in

addressing the unique challenges of MoE inference.

We present MegaScale-Infer, an efficient and cost-effective sys-

tem designed for large-scale MoE serving. MegaScale-Infer dis-

aggregates the attention and expert modules, assigning them to

separate GPUs—a strategy we term disaggregated expert parallelism.

Our approach offers two major benefits. First, it enables indepen-

dent scaling of each module with customized model parallelism

strategies. Specifically, attention modules are replicated using data

parallelism, while FFN modules are scaled with expert parallelism.

By consolidating requests frommultiple attention replicas, the GPU

utilization of each expert increases significantly as the batch size

per attention replica grows. Second, it enables the deployment

of attention and FFN modules on heterogeneous GPUs to fully

leverage their different capabilities and achieve lower costs. For

example, attention modules can be deployed on GPUs with more

cost-effective memory capacity and bandwidth, while FFN mod-

ules can utilize GPUs with more affordable compute capability. As

shown in Figure 1(c), FFN can easily become compute-intensive in

MegaScale-Infer, while attention achieves higher GPU utilization

per unit cost under heterogeneous deployment.

Disaggregated expert parallelism introduces two new techni-

cal challenges. First, the disaggregation architecture causes the

attention and FFN modules to be idle for a batch when the other

is computing or when they are waiting for tokens. We design a

ping-pong pipeline parallelism strategy that splits a batch of re-

quests into multiple micro-batches to keep the attention and FFN

busy and hide the communication overhead. Furthermore, the effec-

tiveness of the ping-pong pipeline parallelism strategy depends on

certain conditions, such as similar computation time for attention

and FFN. To fill the pipeline and maintain high GPU utilization,

MegaScale-Infer optimizes the model parallelism strategy for each

module based on a performance model specifically designed for

disaggregated MoE serving.

Second, the arbitrary parallelism configuration of the attention

and FFN modules transforms the original All2All communication

between them for token routing intoM2N communication, whereM

and N represent the number of senders and receivers, respectively.

Based on our observations about the performance shortcomings of

popular communication libraries [12] in the context of this specific

communication pattern, we develop a high-performance M2N com-

munication library with a focus on reducing operational overhead

and improving communication stability.

We implement MegaScale-Infer and evaluate it using MoE mod-

els with sizes ranging from 132 to 317 billion parameters. The

experimental results show that MegaScale-Infer outperforms state-

of-the-art LLM serving systems by up to 1.9× in per-GPU decoding

throughput. We also conduct experiments on a heterogeneous clus-

ter, where MegaScale-Infer achieves 1.7× higher throughput per

unit cost. Compared to NCCL [12], a widely-used communication li-

brary, MegaScale-Infer’s M2N communication achieves 4.2× higher
throughput and 68.2% lower latency. MegaScale-Infer has already

been deployed in the company’s inference services and reduces the

serving cost by 1.5–2.0×.
In summary, we make the following contributions.

• We present MegaScale-Infer, a system for efficiently serving

large-scale MoE-based LLMs. Leveraging insights into the char-

acteristics of Transformer and MoE, we employ a disaggregated

approach for the attention and FFN modules. This approach of-

fers dual advantages: it enables tailored parallelism strategies

and independent hardware selection, thereby optimizing system

efficiency and cost-effectiveness.

• In order to support the disaggregated serving architecture at scale,

we present a ping-pong pipeline parallelism strategy to utilize

GPU compute capabilities and hide communication, and develop

a high-performance M2N communication library to enhance

network performance.

• Our experiments demonstrate significant improvements in through-

put and cost-effectiveness with our system’s unique capabilities.

MegaScale-Infer achieves up to 1.90× and 1.86× per-cost decod-

ing throughput against state-of-the-art LLM serving systems on

homogeneous and heterogeneous clusters, respectively.

This work does not raise any ethical issues.

593

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

2 Background and Motivation
2.1 LLM Inference Characteristics
A Transformer-based LLM typically consists of multiple layers,

with each layer containing an attention module and an FFN module.

Unlike traditional DNN inference, LLM inference follows an autore-

gressive pattern. It takes a sequence of input tokens, known as a

prompt, as input and goes through the attention and FFN modules

for multiple iterations to generate output tokens. In the prefill phase

or the first iteration, the model computes the attention between

each pair of tokens in the prompt to produce the first output token.

During this iteration, intermediate representations, or key-value

(KV) cache, are stored for each token. These cached representations

are then used in the subsequent iterations to calculate the attention.

In the following decoding iterations, the LLM generates the next

token by computing the attention between the newly generated

token and all previous tokens.

The autoregressive generation pattern makes the attention mod-

ule compute-intensive during the prefill phase andmemory-intensive

during the decoding phase. Even with request batching [20, 79], a

widely-used optimization in efficient LLM serving, attention during

the decoding phase remains the same memory access intensity.

This is because each request has its own KV cache of input and

previously generated tokens, which is different from each other. In

the decoding iteration, each request must access its respective KV

cache. In contrast, the computation of FFN only requires loading

the corresponding model weights from GPU memory to SRAM,

which can be shared across all tokens from different requests. Con-

sequently, as presented in Figure 1(a), batching is only efficient for

FFNs to reuse model parameters and improve GPU utilization.

2.2 LLM Serving at Scale
The scaling law [50] highlights the significance of model size as a

key determinant of the model capability. To achieve state-of-the-art

model capability, many efforts [35, 49] have been invested in scaling

LLMs to hundreds of billions of parameters. Due to the large model

size, serving these models necessitates both algorithmic and system

optimizations.

Mixture of experts. From an algorithmic perspective, mixture-

of-experts (MoE) models show significant potential in enhancing

the performance of LLMs with sub-linear scaling computational

complexity and are gaining popularity in large-scale model imple-

mentations [34–36, 52]. We focus on MoE in Transformer-based

LLMs in this work.

MoE models replace the feed-forward network (FFN) layer with

an MoE layer, which consists of multiple FFNs acting as experts,

as shown in Figure 2(a). A gating network within the MoE layer

routes input tokens to a subset of these experts, i.e., top-k experts,

based on matrix multiplication between each token’s embedding

vector and the gating network’s trainable parameters. The final

output of the MoE layer is a weighted sum of the selected experts’

outputs. The sparse nature of MoE allows for scaling the model

size by increasing the number of experts without linearly raising

computational costs. For instance, Mixtral 8x22B [70] has around

141B parameters, but its active parameters for each token are only

approximately 39B with top-2 expert selection.

Next layer

(a) MoE layer.

Tokens

(b) Expert parallelism.

Attention Gate

Expert0
Expert1
Expert2
Expert3

+A

Next layer

Next layer

All2All

Attention
Gate Expert0

Expert1 +
A

Gate Expert2
Expert3 +

B

Figure 2: MoE and expert parallelism.

Model parallelism. From a systems perspective, serving large-

scale LLMs requires a distributed approach due to the limited mem-

ory and compute capacity of a single device. Model parallelism

distributes model parameters across multiple devices to improve ef-

ficiency. Tensor parallelism [65] (TP) partitions compute-intensive

operators like matrix multiplications to accelerate computation, but

it introduces substantial communication overhead. Thus, tensor

parallelism is usually confined to a single node with multiple GPUs,

where intra-node NVLink bandwidth is typically much higher than

inter-node network bandwidth. Pipeline parallelism [45] divides

model layers into stages, each running on a device to form a pipeline.

This method slightly increases inference time due to inter-stage

communication but scales serving throughput linearly with each

additional stage.

A parallelism strategy specialized for MoE named expert paral-

lelism (EP) is also widely applied in MoE serving [62]. As shown

in Figure 2(b), each device only contains some of the experts in

expert parallelism. Consequently, the forward pass of an MoE layer

requires two all-to-all communications: one to send input tokens to

the experts selected by the gating network, and the other to send

the processed tokens back. In EP, the computation of each expert

involves complete matrix multiplication, which is more conducive

to GPU computation compared to TP, where a single matrix multi-

plication is split across multiple GPUs. The potential issue of EP is

load imbalance between experts and the increased communication

volume as the number of top-k experts grows. Therefore, whether

TP or EP benefits FFN more depends highly on the structure of

MoE models and the real-time workload.

2.3 Problems in Large-scale MoE Serving
As demonstrated in §2.1, the memory-intensive attention operation

during the decoding phase leads to low GPU utilization, while FFNs

can achieve high efficiency through request batching. However, the

sparsity of MoE alters this situation. Although the sparsity enables

sub-linear scaling of computational complexity, it significantly de-

creases the inference efficiency. Figure 1(b) presents a schematic

diagram of the impact. Given a request batch during the decoding

phase, each expert processes only a portion of them, resulting in a

smaller batch size for FFNs, thereby lowering the GPU utilization.

Take Mixtral 8x22B as a more concrete example. Assume that we

use NVIDIA A100-SXM-80GB GPUs, which have a computational

power of 312 TFLOPS and memory bandwidth of 2 TB/s, to serve

594

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

Expert Node
Expert i’s ParametersNIC

NIC

M2N

Tensor Parallel

N2M

Replicate (M) Expert Parallel (N)

IB/Eth

Attention Node
Attention Parameters

& KV Cache

Tensor Parallel

NIC

NIC

Ping-Pong Pipeline Parallel

Figure 3: MegaScale-Infer runtime instance architecture.

this model with the bfloat16 datatype. The floating point operations

required for a 𝑏 × ℎ to ℎ × 𝑛 GEMM (General Matrix to Matrix

Multiplication) are 2𝑏ℎ𝑛, where 𝑏 and ℎ represent the decoding

batch size and the model’s hidden dimension size, respectively. The

number of parameters this GEMMneeds to access isℎ𝑛, and the data

volume is 2ℎ𝑛 for bfloat16. Let the GPU’s floating point compute

capability be 𝐹 and the memory bandwidth be 𝐵. According to the

roofline model [74], a GPU requires that
2𝑏ℎ𝑛
𝐹
≥ 2ℎ𝑛

𝐵
, i.e., 𝑏 ≥ 𝐹

𝐵
,

to fully utilize its matrix multiplication capability. For an A100

GPU, the batch size at least needs to be 156 tokens (
312𝑇𝐹𝐿𝑂𝑃𝑆

2𝑇𝐵/𝑠).

However, given a batch size of 156, the average number of decoding

tokens dispatched to each expert is 156 × 𝑡𝑜𝑝𝑘/#𝑒𝑥𝑝𝑒𝑟𝑡 = 156 ×
2/8 = 39, with the theoretical Model Flops Utilization (MFU) for

FFN modules of 2/8 = 25%. Formally, the theoretical relationship

between batch size and FFN’s GPU utilization for dense models is

𝑢𝑡𝑖𝑙 =𝑚𝑖𝑛(𝐵
𝐹
𝑏, 1), but for MoE, it is 𝑢𝑡𝑖𝑙 =𝑚𝑖𝑛(𝑡𝑜𝑝𝑘

#𝑒𝑥𝑝𝑒𝑟𝑡
𝐵
𝐹
𝑏, 1).

Ideally, we can enhance the inference efficiency by increasing

the batch size, but in practice, there are many factors that constrain

the batch size. For instance, a larger batch size may compromise the

requirement of low latency in online model serving. Additionally,

the GPU memory constraint for KV cache limits the batch size

growth. Especially for large-scale MoE, the GPU memory becomes

more scarce, resulting in a smaller maximum batch size. Although

enlarging the model parallelism with more GPUs may allow a larger

batch size, it also introduces more communication overhead.

2.4 Opportunities and Challenges
To address the inefficiency caused by MoE sparsity, we find that

disaggregating the attention modules and FFN modules naturally

provides two key advantages:

• Independent scaling. This allows us to scale serving instances

with attention modules independently, aggregating decoding re-

quests for each FFNmodule. Thismakes the FFNmodule compute-

intensive and achieves optimal GPU utilization.

• Heterogeneous deployment. The disaggregated architecture

naturally separates the deployment for attention and FFN mod-

ules, allowing for the use of the most cost-effective GPUs for each.

It also opens up opportunities to use specialized hardware and

software to separately accelerate attention and FFN computation.

There are two main technical challenges to realize efficient dis-

aggregation of attention and FFN. First, since each token must

repeatedly and sequentially pass through the attention and FFN

Symbol Description

𝐵 Global batch size per instance

𝑚 #micro-batches

𝑏𝑎, 𝑏𝑒 Micro-batch size per node

ℎ Hidden size of the LLM

ℎ′ Intermediate dimension size of FFN

𝑔 Number of query heads per group in GQA

𝐿 #layers of the LLM

𝑠 Average sequence length in a batch

𝐾 number of selected experts for each token

𝐸 #experts / #expert nodes per instance

𝑛𝑎 #attention nodes per instance

𝑡𝑝𝑎, 𝑡𝑝𝑒 TP size for attention and expert nodes

𝑁𝑚 #micro-batches limit per instance

𝑀𝑎, 𝑀𝑒 #GPUs per node limit for attention and expert

𝐶𝑎,𝐶𝑒 GPU memory capacity for attention and expert

𝑃𝑎, 𝑃𝑒 Parameter size of attention and one expert

𝑇𝑎,𝑇𝑒 Computation time of one micro-batch

𝑇𝑐 Communication time of one micro-batch

𝑡𝑝𝑢𝑐 throughput per unit cost

Table 1: Key notations.

modules, disaggregating these two components introduces idle

periods. Specifically, the attention modules remain idle while the

FFN modules are performing computations, and vice versa. Both

modules can also experience idle time while waiting for outputs to

be transmitted over the network. Therefore, a ping-pong pipeline

must be established between the attention and FFN modules to

ensure continuous utilization. Furthermore, this pipeline should be

meticulously co-designed with the model parallelism strategies of

each module to maximize GPU utilization while adhering to latency

requirements.

Second, the independent scaling enabled by disaggregation re-

quires M2N and N2M communication between M attention GPUs

and N expert GPUs, replacing the traditional All-to-All communi-

cation used in each MoE layer. However, directly leveraging peer-

to-peer communication primitives from existing libraries results in

significant performance degradation, highlighting the need for a

specialized communication library tailored to the M2N pattern.

3 MegaScale-Infer Overview
In this work, we present MegaScale-Infer, a system designed for ef-

ficiently serving MoE-based LLM at scale. Following prior work [60,

82], MegaScale-Infer decouples prefill and decoding into separate

clusters to eliminate their interference and meet their respective

latency requirements. In this paper, we focus on the decoding phase,

aiming to address its inefficiency. Figure 3 illustrates the overall

architecture of a MegaScale-Infer runtime instance serving a sin-

gle model replica during the decoding phase. By disaggregating

the attention and FFN modules onto separate attention and expert

nodes, respectively, MegaScale-Infer allows for independent scaling

and heterogeneous deployment of attention and FFN, significantly

enhancing system efficiency and reducing serving costs.

Disaggregated expert parallelism. To facilitate large-scale MoE

serving, MegaScale-Infer employs a hybrid parallelism strategy

called disaggregated expert parallelism. Each expert node typically

595

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

dependency across layers

11 21 31 41
11 21 31

12 22

11 21 31 41 12 22
41 12 22

11 21 31 41 12 22

32 42

32 42
32 42

32 42

Attention
A2E

Expert
E2A

Time

ik micro-batch i at layer k

𝐦𝐚𝐱{𝑻𝒂, 𝑻𝒆}×(𝒎𝑳 − 𝟏)

𝑻𝒂

𝑻𝒆

𝑻𝒄𝑻𝒄

#micro-batches = 4 #layers = 2

𝐦𝐚𝐱{𝑻𝒂, 𝑻𝒆}×𝒎×(𝑳 − 𝟏) 𝑻𝒄

𝒎 𝑳

Figure 4: Illustration of ping-pong pipeline parallelism.

consists of 1-8 GPUs within a single physical server and stores

the parameters of one expert. All expert nodes together form an

expert parallelism group. The parameters of the attention module

(e.g., weight matrices for QKV and output projection) are repli-

cated on each attention node, where the key-value caches are also

stored. Tensor parallelism is employed within each attention/expert

node to leverage high-bandwidth connectivity between GPUs (e.g.,

NVLink). MegaScale-Infer also designs a ping-pong pipeline paral-

lelism strategy tailored to the disaggregated architecture, feeding

micro-batches of requests into attention and expert nodes to keep

them busy during communication or while awaiting results from

other nodes. MegaScale-Infer determines the detailed deployment

plan based on a performance model designed for the disaggregated

expert parallelism.

High-performance M2N communication. MegaScale-Infer em-

ploys a customized M2N communication library to transfer the

intermediate outputs between each pair of attention nodes and

expert nodes. To achieve efficient and stable data transmission, the

library removes unnecessary GPU-to-CPU data copies, group ini-

tialization overhead, and GPU synchronization. It also proposes

traffic-oriented optimizations specific to this scenario.

4 Disaggregated Expert Parallelism
In this section, we present the design of ping-pong pipeline par-

allelism and the approach to generating the deployment plan of

MegaScale-Infer. Given the MoE model, workload characteristics

(e.g., sequence lengths), available hardware, and latency require-

ments, MegaScale-Infer determines the deployment plan by specify-

ing (𝑖) the respective parallelism strategies for attention and experts,

(𝑖𝑖) the number of micro-batches for the ping-pong pipeline, (𝑖𝑖𝑖)
the maximum batch size, and (𝑖𝑣) the hardware setup for deploy-

ment. Our goal is to identify the deployment plan that maximizes

throughput per unit cost (e.g., dollar). Table 1 lists the key notations

in our discussion. We assume the model uses grouped-query atten-

tion (GQA) [24], which is the most popular method for attention.

4.1 Ping-Pong Pipeline Parallelism
As we decouple the FFN modules from the attention modules, using

a single batch of requests would result in idle time for both the

attention nodes and the expert nodes when the other module is

busy. GPUs also remain idle during the inter-node communication.

To address this problem, as illustrated in Figure 4, we split a batch

Algorithm 1 Deployment Plan Search for Decoding Phase

Input: MoE model 𝐺 , 𝐶𝑎 , 𝐶𝑒 , 𝑁𝑚 ,𝑀𝑎 ,𝑀𝑒

Output: the optimal deployment plan 𝑝𝑙𝑎𝑛∗

1: 𝑝𝑙𝑎𝑛∗ ← ∅
2: for 𝑡𝑝𝑒 ∈ {1, 2, . . . , 𝑀𝑒 } do
3: for 𝑡𝑝𝑎 ∈ {1, 2, . . . , 𝑀𝑎} do
4: if 𝑡𝑝𝑎 ×𝐶𝑎 > 𝑃𝑎 and 𝑡𝑝𝑒 ×𝐶𝑒 > 𝑃𝑒 then
5: 𝑛𝑎 ← balance(𝐺 , 𝑡𝑝𝑎 , 𝑡𝑝𝑒)

6: for𝑚 ∈ {3, 4, . . . , 𝑁𝑚} do
7: 𝑝𝑙𝑎𝑛 ← {(𝑡𝑝𝑒 , 𝐸), (𝑡𝑝𝑎, 𝑛𝑎),𝑚}
8: 𝐵, 𝑡𝑝𝑢𝑐 ← simulate(𝐺, 𝑝𝑙𝑎𝑛, 𝑆𝐿𝑂)

9: 𝑝𝑙𝑎𝑛 ← 𝑝𝑙𝑎𝑛 ∪ {𝐵, 𝑡𝑝𝑢𝑐}
10: if 𝑝𝑙𝑎𝑛∗ .𝑡𝑝𝑢𝑐 < 𝑝𝑙𝑎𝑛.𝑡𝑝𝑢𝑐 then
11: 𝑝𝑙𝑎𝑛∗ ← 𝑝𝑙𝑎𝑛

of requests into𝑚 micro-batches, creating a ping-pong pipeline be-

tween the attention nodes and expert nodes. These nodes perform

the forward pass of the micro-batches and exchange intermediate

results twice in each MoE layer. This setup allows the forward com-

putation to cover the communication overhead, thereby achieving

higher GPU utilization.

Let𝑇𝑎 and𝑇𝑒 represent the computation time of a micro-batch on

an attention node and an expert node, respectively. We define 𝑇𝑓 =

max{𝑇𝑎,𝑇𝑒 } as the maximum of these two values. 𝑇𝑐 denotes both

the communication time from attention nodes to expert nodes and

vice versa, as the two bi-directional communications share the same

network configuration. Our objective is to overlap communication

with computation, keeping the GPUs fully utilized. The necessary

conditions to achieve this are

𝑇𝑎 ≈ 𝑇𝑒 , (1)

𝑇𝑐 < 𝑇𝑓 , (2)

𝑚 ×𝑇𝑓 ≥ 2 × (𝑇𝑓 +𝑇𝑐) . (3)

Constraint 1 aims to minimize the GPU idle time caused by

computation dependencies across MoE layers. Constraint 2 and

constraint 3 describe methods for hiding communication overhead.

Specifically, the communication time for a single micro-batch must

be shorter than the forward computation time of attention and

experts, and the forward time of one MoE layer for the global

batch on each node must be sufficient to cover the time required

for a single micro-batch to pass through the layer. We can then

obtain the minimum number of micro-batches needed using for-

mula𝑚 ≥ 2 × (1 + 𝑇𝑐
𝑇𝑓
), where 0 <

𝑇𝑐
𝑇𝑓

< 1. For deployments with

fast communication (𝑇𝑐 < 1

2
𝑇𝑓), at least 3 micro-batches are re-

quired. For those with relatively slower communication, at least 4

micro-batches are required.

Let the number of MoE layers be 𝐿. As illustrated in Figure 4,

considering the imbalanced computation between attention nodes

and expert nodes, the decoding iteration latency of one micro-batch

can be estimated as

(𝑇𝑎 +𝑇𝑒 + 2𝑇𝑐) +𝑚𝑇𝑓 (𝐿 − 1) ≤ 𝑇𝑖𝑡𝑒𝑟 ≤ 𝑚𝑇𝑓 𝐿. (4)

The total iteration latency of the global batch is

𝑇𝑡𝑜𝑡𝑎𝑙 = (𝑇𝑎 +𝑇𝑒 + 2𝑇𝑐) +𝑇𝑓 (𝑚𝐿 − 1) . (5)

596

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

GEMM Name Shape of Input Shape of Param.

QKV Project (𝑏𝑎, ℎ) (ℎ,ℎ(1 + 2/𝑔)/𝑡𝑝𝑎)
Attn Output (𝑏𝑎, ℎ/𝑡𝑝𝑎) (ℎ/𝑡𝑝𝑎, ℎ)
FFN Input (𝑏𝑒 , ℎ) (ℎ,ℎ′/𝑡𝑝𝑒)
FFN Output (𝑏𝑒 , ℎ′/𝑡𝑝𝑒) (ℎ′/𝑡𝑝𝑒 , ℎ)

Table 2: GEMMs used in MoE inference.

4.2 Deployment Plan Search
Considering ping-pong pipeline parallelism, the search space of

MegaScale-Infer deployment plan includes the tensor parallelism

sizes for attention nodes (𝑡𝑝𝑎) and expert nodes (𝑡𝑝𝑒), the number of

attention nodes (𝑛𝑎), the number of micro-batches, and the global

batch size (𝐵). Our objective is to minimize the throughput per

unit cost while adhering to the SLO constraint. Algorithm 1 shows

the pseudo-code for searching the optimal deployment plan given

hardware setup andmodel configurations. It enumerates the feasible

𝑡𝑝𝑎 and 𝑡𝑝𝑒 , subject to GPU memory capacity limit. For each pair of

𝑡𝑝𝑎 and 𝑡𝑝𝑒 , it calculates the number of attention nodes to balance

the computation time as closely as possible according to constraint 1.

The algorithm then compares the throughput per unit cost among

deployment plans with varying numbers of micro-batches. Using

the SIMULATE function, it determines the maximum global batch

size that meets the SLO through binary search and obtains the

optimal plan.

The complexity of Algorithm 1 is𝑂 (𝑀2𝑁𝑚), with𝑀 as the GPU

limit per server and 𝑁𝑚 as the maximum number of micro-batches.

Typically,𝑀 has four choices (e.g., {1, 2, 4, 8}) in modern clusters.

We set 𝑁𝑚 to four because splitting into too many micro-batches

reduces GEMM efficiency in expert nodes and thus increases the

latency. Consequently, the search space remains manageable.

Performance simulation.We then dive into the MoE layers to an-

alyze the simulation of𝑇𝑎 ,𝑇𝑒 , and𝑇𝑐 .𝑇𝑎 includes two GEMMs: QKV

Project and Attn Output, while 𝑇𝑒 includes another two GEMMs:

FFN Input and FFN Output. Their input and parameter shapes are

shown in Table 2. The arithmetic intensity of attention GEMMs

and FFN GEMMs are 𝑂 (𝑏𝑎) and 𝑂 (𝑏𝑒), respectively, with the rela-

tionship 𝑏𝑎 ×𝑚 × 𝑛𝑎 = 𝑏𝑒 ×𝑚 × 𝐸/𝐾 = 𝐵. The attention module

is memory-intensive since it needs to access the KV cache of all

tokens in the batch. Let the average sequence length be 𝑠 , the KV

cache access time is nearly proportional to 𝑏𝑎𝑠 . The tensor paral-

lelism synchronization time is 𝑂 (𝑏𝑎ℎ(𝑡𝑝𝑎 − 1)/𝑡𝑝𝑎). Thus, we can
model 𝑇𝑎 as 𝑘1𝑏𝑎 + 𝑘2 and model 𝑇𝑒 as 𝑘3𝑏𝑒 + 𝑘4 similarly, where

𝑘𝑖 values can be obtained through profiling and interpolation as

prior work does [82]. Consequently, 𝑛𝑎 = (𝑏𝑒𝐸)/(𝑏𝑎𝐾) can be set

as (𝑘1𝐸)/(𝑘3𝐾) to balance 𝑇𝑎 and 𝑇𝑒 .

As for 𝑇𝑐 , it equals the maximum time between sending and

receiving. We profile the relationship between network bandwidth

utilization and message size to estimate 𝑇𝑐 . Specifically,

𝑇𝑐 = max{ 𝑏𝑎ℎ𝐾/𝑡𝑝𝑎
𝑊𝑎 ×𝑈𝑡𝑖𝑙 (𝑏𝑎ℎ𝐾/𝑡𝑝𝑎)

,
𝑏𝑒ℎ/𝑡𝑝𝑒

𝑊𝑒 ×𝑈𝑡𝑖𝑙 (𝑏𝑒ℎ/𝑡𝑝𝑒)
}, (6)

where𝑊𝑎 and𝑊𝑒 represent the network bandwidth per GPU on

attention and expert nodes, respectively.

Accelerator Price

Cap.

(GB)

Bw.

(GB/s)

Comp.

(TFLOPS)

Performance per Cost

GB GB/s TFLOPS

L20 1.00 48 864 119.5 48 864 119.5

H800 5.28 80 3430.4 989 15.2 649.7 187.3

A800 2.26 80 2039 312 35.4 902.2 138.1

H20 1.85 96 4096 148 51.9 2214.1 80.0

L40S 1.08 48 864 362 44.4 800.0 335.2

Table 3: Performance specifications and cost-effectiveness of
different hardware. Prices are normalized by L20.

In addition to constraint 1, 2, and 3, there are two constraints in

the search process:

𝑇𝑖𝑡𝑒𝑟 ≤ 𝑆𝐿𝑂, (7)

4𝑚𝑏𝑎𝑠ℎ𝐿/𝑔 + 2𝑃𝑎 < 𝑡𝑝𝑎𝐶𝑎 . (8)

Constraint 8 represents the GPU memory capacity limit for bfloat16

KV cache size. And the throughput per unit cost is
𝐵/𝑇𝑡𝑜𝑡𝑎𝑙

𝑡𝑝𝑎𝑛𝑎𝐶𝑜𝑠𝑡𝑎+𝑡𝑝𝑒𝐸𝐶𝑜𝑠𝑡𝑒 .

4.3 Heterogeneous Deployment
MegaScale-Infer supports a heterogeneous hardware setup for at-

tention nodes and expert nodes. Specifically, we use GPUs with

higher per-cost memory bandwidth and larger per-cost memory

capacity for attention nodes, as these nodes are memory-intensive,

spending most of their time on memory access and requiring signif-

icant storage for the KV cache. Similarly, for expert nodes, which

are compute-intensive, we use GPUs with higher cost-effectiveness

in compute capability.

Table 3 lists the performance specifications, prices, and corre-

sponding ratios for a selection of NVIDIA GPUs. We enumerate the

scenarios of using each type of GPU as the hardware for attention

or expert nodes to determine the optimal deployment plan. Intu-

itively, H20 is more suitable for attention due to its large memory

capacity and high memory bandwidth per unit cost. Meanwhile,

the L40S GPU is more cost-effective for experts.

Heterogeneous deployment can also reduce energy consumption

by utilizing hardware with lower energy consumption per unit of

compute or bandwidth. For example, the H20 and L40S GPUs have

maximum power consumptions of 500W and 350W, respectively.

Under the same power consumption, the L40S offers higher com-

pute performance, while the H20 provides higher bandwidth. We

demonstrate the improvements in both cost and energy efficiency

achieved through heterogeneous deployment in §7.2.

5 High-Performance M2N Communication
In MoE inference, token dispatch and aggregation (i.e., communi-

cation between attention and FFN modules) rely on peer-to-peer

primitives, as the destinations are determined dynamically. To mo-

tivate the need for a custom communication library for token dis-

patch, we start by highlighting the limitations of the existing solu-

tion, NCCL [12]. Specifically, we compare NCCL to perftest [21],

a networking micro-benchmark designed to measure latency and

throughput from the perspective of a simple CPU client, with conve-

nient support for GPU memory buffers as both sources and destina-

tions. We use perftest as a baseline to establish the lower bound of

achievable latency, with data dynamically dispatched in a manner

similar to token routing in MoE inference. Figure 5 presents the

597

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

8 16 32
Number of receivers (N)

(a) Median Latency

0

150

300

450

600

750

La
te

nc
y

(u
s)

8 16 32
Number of receivers (N)

(b) P99 Latency

0

400

800

1200

1600

2000

La
te

nc
y

(u
s)

NCCL Perftest

Figure 5: One-to-N latency: a single sender sends 128K bytes
to each receiver in N, where |N| = {8, 16, 32}.

observed latency when a single sender transmits 128K bytes to each

receiver in N, where |N| = {8, 16, 32}. Based on this experiment, we

derive the following observations:

• High additional overheads. Figure 5(a) shows the median la-

tency for both alternatives. While the scaling trends appear to

follow similar patterns, the latency of NCCL significantly exceeds

that of the baseline.

• Instability at higher percentiles. The performance issue high-

lighted in Figure 5(a) consistently exacerbates at higher per-

centiles, as shown in Figure 5(b). At the 99th percentile, the

baseline experiences only a slight increase in latency, whereas

NCCL exhibits a significant surge, particularly when scaling to

32 or more receivers.

The underlying causes of these issues are multifaceted, stem-

ming from specific design choices in NCCL that are not well-suited

for this particular use case. Regarding overhead, we first note that

NCCL networking requires intermediate copies [10] to transfer

data from the GPU memory to the CPU proxy, which performs

the network operations. While features like user buffer registra-

tion [13] aim to reduce these copies, they do not fully eliminate

them. Second, peer-to-peer group operations [11] are processed in

batches of at most 8 operations, which causes a harmful effect as

the number of receivers scales. Third, as a general-purpose collec-

tive communication library, NCCL incurs overhead from general

group operation setup, including preparing and launching a batch

of N send operations, internal handling and verifications, etc. While

these steps are essential for ensuring broad applicability, they intro-

duce unnecessary latency and can be optimized, though not entirely

eliminated. Regarding stability, this issue is much more complex

and can arise from multiple sources, including OS, memory, net-

working, and GPU thermal differences [26, 39, 43, 66, 69, 78, 81].

Previous studies have highlighted that common sources of insta-

bility often arise from GPU synchronization operations and device

memory accesses [41, 83], both of which are prevalent in NCCL but

absent in the baseline.

Based on these insights, we build our high-performance com-

munication library with the goal of eliminating unnecessary GPU-

to-CPU copies, group initialization/handling overhead, and GPU

synchronization/memory accesses. Figures 6 and 7 illustrate the

sender and receiver architectures and their interactions within our

M2N library.

M2N Sender. Figure 6 depicts the components of an M2N sender. In

order to comply with the stream-oriented programming model, ①

GPU

Tensor Memory
buf1 buf2 bufn…

Host
M2N Sender

Core Sender

Block

M2NSend

Wait

PollCQ

sendToN(n) poll_cq()

QP1 QP2 QPn
CQ for
n QPs…

Receiver1 Receivern

RNIC

Control Plane Data Plane

4

1

2

3

5

GPU Stream

Previous kernel

Next kernel

Unblock 6

…

Figure 6: M2N Sender components and interactions.

M2N senders utilize CUDA events [5] to wait for previous kernels

and make sure that the ② pre-registered tensor to be transmit-

ted is properly populated. Then, to ensure the next kernel in the

stream starts after the transmission is complete, M2N senders utilize

CUDA driver operations [4] to ③ block the stream. Once the stream

is blocked, the data transmission proceeds in two steps: First, ④

our in-house CPU communication library (denoted as Core Sender
in the figure) transmits the tensor efficiently using RDMA write

with immediate [14]. Second, to guarantee proper utilization of the

registered tensor, ⑤ the sender polls completions from the corre-

sponding completion queue [18], confirming that data has been

written to the remote buffers. Finally, M2N senders ⑥ unblock the

stream by updating a shared memory flag, allowing other kernels

to continue reusing the registered memory. This design eliminates

complex GPU synchronization, GPU-to-CPU copies, and group ini-

tialization overhead, all of which contribute to significant latency

issues, especially for relatively small tensor sizes, as demonstrated

in Figures 11 and 12.

M2N Receiver. Figure 7 illustrates the components of an M2N

Receiver. Just like its peer component, M2N receivers also need

to adhere to the stream-oriented programming model. Specifically,

they ① wait on CUDA events to ensure that the ② pre-registered

tensor is no longer in use, and ③ block the stream to guarantee that

subsequent kernels do not proceed until the operation is complete.

Once the stream is blocked, the data collection proceeds in two

steps: First, receivers must verify that data has been successfully

transmitted from the corresponding senders, which is efficiently

achieved by ④ polling the relevant completion queue. Second, to

ensure data consistency at the GPU level, our in-house CPU com-

munication library (denoted as Core Receiver in the figure) leverages
GDRCopy [15] and performs a ⑤ flush operation [1]. Finally, M2N

receivers ⑥ unblock the stream by updating a shared memory flag,

allowing other kernels to continue utilizing the registered memory.

This simpler design eliminates the need for GPU-to-GPU copies

and effectively reduces the GPU utilization overhead of receivers.

Traffic-oriented optimizations.We also introduce several traffic-

oriented optimizations derived from our empirical observations

during the scale-testing of our design.

598

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

GPU

Tensor Memory
buf1 buf2 bufn…

Host
M2N Receiver

Core Receiver

Block

PollCQ

Wait

poll_cq() Flush

QP1 QP2 QPn
CQ for
n QPs…

Sender1 Sendern…

RNIC

Control Plane Data Plane

4

1

2

3

GPU Stream

Previous kernel

Next kernel

Unblock 6

5

Figure 7: M2N Receiver components and interactions.

• High-priority ACKs. We initially observed latency degrada-

tion in bidirectional communication with ping-pong pipeline

parallelism. A detailed analysis revealed that ACK packets were

often queued or transmitted with low priority (e.g., round-robin

scheduling), leading to a large number of QP packets. There-

fore, the receiving side experienced delays in responding to ACK

packets, causing bottlenecks for M2N senders. To address this

issue, we assign ACK packets to high-priority queues, isolating

them from data packets, and fine-tuning the associated weight

configurations empirically.

• Congestion control fine-tuning.We observed substantial la-

tency degradations in unbalanced communication scenarios, where

the amount of data to be sent varies significantly per receiver. To

address this, we fine-tune our congestion control algorithms to

minimize rate-limiting effects and allow faster convergence.

ComparisonwithDeepEP.DeepEP [7, 35, 80] proposed byDeepSeek
also optimizes network communication for large-scale expert par-

allel serving in MoE. The key difference between our approach and

DeepEP lies in the communication strategy: we leverage CPUs for

inter-node communication, whereas DeepEP employs direct GPU-

to-GPU communication without the involvement of CPU prox-

ies [2]. GPU-to-GPU communication approaches consume GPU

compute resources on both the sender and receiver sides [19]. In

contrast, our CPU-to-CPU communication avoids the need for GPU

compute resource allocation, thereby allowing compute kernels

to fully utilize the GPU. Moreover, GPU-to-GPU communication

demands careful orchestration to mitigate contention between com-

munication and computation kernels. DeepEP employs custom PTX

(assembly-like) instructions [17] to minimize L2 cache usage—a re-

source shared between kernel types. Our design, by comparison,

does not require such low-level optimizations. When handling re-

quests within a single QP, the CPU achieves lower latency in our

approach because its higher clock speed allows it to issue doorbells

faster than the GPU. However, the GPU offers stronger parallel pro-

cessing capabilities, with multiple SMs able to independently man-

age QPs. Consequently, DeepEP’s approach can achieve a higher

packet transmission rate at the cost of GPU SM resources and

may yield better throughput when the packet size is very small. In

Model #Layers Hidden Size #Experts top-𝑘 Intermediate Size

Mixtral-8×22B 56 6144 8 2 16384

DBRX 40 6144 16 4 10752

Scaled-MoE 48 8192 32 4 8192

Table 4: Model configurations.

our scenario, the amount of data transferred between each sender-

receiver pair typically reaches several hundred kilobytes (§7.3).

At this scale, a single-threaded CPU is sufficient to saturate the

bandwidth. If the number of experts increases further and the per-

connection communication volume becomes smaller, leveraging the

GPU’s superior parallel processing capabilities may offer greater

advantages in terms of throughput.

6 Implementation
Fused kernels. To further improve efficiency and reduce latency,

we implemented two types of fused kernels. The first one is to

overlap the communication of TP with the adjacent computation.

Although intra-node TP typically uses high-speed interconnects

like NVLINK for communication, it still introduces non-negligible

overhead. To address this issue, we utilize Flux [29] to fuse commu-

nication with the adjacent GEMM operation, such as implementing

an all-gather and the following GEMM in a single kernel. The sec-

ond one is to fuse sequential memory-intensive operators. MoE

includes several sequences of small memory-intensive operations.

For example, attention nodes need to select top-k experts for each

token after gating, compute intermediate results such as the number

of tokens sent to each expert node and normalized token weights,

and then perform data movement to scatter tokens to respective ex-

perts. We optimize this process by fusing these steps with the gating

computation, reducing both kernel launch and memory access.

High-performance M2N communication library. We built our

communication library as a Pytorch extension [22] in around 4900

and 5000 lines of C/C++ and Python code, respectively. Our library

is supported by technologies such as GPUDirect [16] and GDRCopy.

We also carefully design network monitoring tools to delve into

network and traffic-related optimizations.

Load balance. In real-world traffic, the load across different experts

can vary significantly. To achieve load balancing between hot and

cold experts, we deploy it with on-device redundancy based on

expert popularity. Specifically, we address the optimization problem

of distributing 𝑀 experts across 𝑁 nodes in expert deployments.

The objective is tominimizemax𝑗=1..𝑁 𝐶 𝑗 , where𝐶 𝑗 =
∑
𝑖=1..𝑀 𝑥𝑖, 𝑗 ·

max(𝑎𝑖 , 𝐾) represents the computational cost that corresponds to

latency. 𝑥𝑖, 𝑗 denotes the allocation fraction, with

∑
𝑗=1..𝑁 𝑥𝑖, 𝑗 = 1.

𝑎𝑖 represents the cost to calculate the active tokens of the expert 𝑖 ,

and𝐾 represents the lowest cost for the cold experts. The algorithm

employs a greedy approximation strategy to solve this optimization

problem and generate an expert plan, based on traffic within a

previous time period.

7 Evaluation
In this section, we first evaluate the end-to-end performance of

MegaScale-Infer against state-of-the-art LLM serving systems across

599

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Mixtral 8x22B DBRX Scaled-MoE
(a) Normalized Decoding Throughput

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 p

er
 G

P
U

 (t
ok

en
s/

s)

Mixtral 8x22B DBRX Scaled-MoE
(b) Time Between Tokens

0

40

80

120

160

La
te

nc
y

(m
s)

Mixtral 8x22B DBRX Scaled-MoE
(c) Normalized End-to-End Throughput

0

100

200

300

400

500

Th
ro

ug
hp

ut
 p

er
 G

P
U

 (t
ok

en
s/

s)

vLLM TensorRT-LLM MegaScale-Infer

Figure 8: Performance of MegaScale-Infer on NVIDIA Ampere GPUs.

various models and hardware configurations, including a heteroge-

neous environment. Next, we demonstrate the effectiveness of high-

performance M2N communication through micro-benchmarks. Ad-

ditionally, we conduct an ablation study to analyze the impact of

disaggregated architecture and M2N optimization on MegaScale-

Infer’s performance. We also present the effectiveness of ping-pong

pipeline parallelism and deployment plans, highlighting the benefits

of deployment plan optimization.

7.1 Experimental Setup

Testbed.We deploy MegaScale-Infer across two distinct clusters.

The first cluster consists of eight nodes, each equipped with eight

NVIDIA 80GB Ampere GPUs, 128 CPUs, 2 TB of host memory,

and eight 200 Gbps Infiniband NICs. GPUs within the same node

are interconnected via 400GB/s NVLINK. The second cluster is

a heterogeneous setup, comprising two types of GPUs: NVIDIA

H20 and L40S. H20 nodes are equipped with 900GB/s NVLINK and

four 400 Gbps NICs, while L40S nodes utilize PCIe for intra-node

communication and two 400 Gbps NICs for inter-node communica-

tion. As shown in Table 3, H20 offers higher memory capacity and

bandwidth but has less computational power than L40S.

Models andworkload.We evaluateMegaScale-Infer usingMixtral

8x22B [70], DBRX [71], and a Scaled-MoE, which shares a similar

structure but includes more experts. They contain 141B, 132B, and

317B parameters, respectively. The model configurations are de-

tailed in Table 4. For all experiments, the data types for weights,

activations, and KV cache are bfloat16. We obtain a dataset from our

production and use it as the experimental workload. The median

input and output length are 571 and 159 tokens, respectively.

Baselines. We compare MegaScale-Infer with two state-of-the-art

serving systems: vLLM [51] and TensorRT-LLM [57]. Both systems

support popular techniques for LLM serving, including FlashAtten-

tion [33], PagedAttention [51], and continuous batching [79]. They

primarily rely on tensor parallelism for distributed LLM serving,

with TensorRT-LLM additionally supporting expert parallelism for

expert layers. For larger models requiring inter-node communica-

tion, both systems also support pipeline parallelism. Due to GPU

memory limits and large model sizes, serving Mixtral 8x22B and

DBRX with these baselines requires a minimum of 8 GPUs, while

Scaled-MoE necessitates multi-node deployment. The Attention-

FFN disaggregation architecture within MegaScale-Infer naturally

adapts to prefill/decoding (P/D) disaggregation, effectively prevent-

ing interference between these two phases. Existing baselines are

still in the process of supporting or optimizing P/D disaggregation.

To ensure a fair comparison and to accurately quantify the perfor-

mance gains under P/D disaggregation, we evaluate all baselines

and MegaScale-Infer by temporally separating their prefill and de-

coding phases. Specifically, when measuring decoding throughput

and time between tokens, we exclude the prefill phase and consider

only the iteration time and output tokens of the decoding phase.

Metrics. The primary objective of our work is to improve the effi-

ciency of MoE inference during the decoding phase, which suffers

from low GPU utilization due to its memory-bandwidth-bound na-

ture. Enhancing decoding efficiency in MoE inference is the key to

reducing overall serving costs. Therefore, we focus on maximizing

the cost-normalized decoding throughput, subject to a specified

time-between-tokens (TBT) latency constraint. Specifically, for ho-

mogeneous deployment, we use per-GPU decoding throughput,

i.e., tokens generated per second, excluding the first output to-

ken, divided by the number of GPUs, as the primary metric. For

heterogeneous deployment, we report per-cost decoding through-

put. Following prior work [82], we set the TBT requirement to

150 milliseconds. We also report the mean time between tokens

corresponding to the throughput results. While our primary contri-

bution lies in improving the efficiency of the decoding phase, we

also report end-to-end throughput results that include the gener-

ation of the first output token. This offers a more comprehensive

evaluation of MegaScale-Infer’s performance improvements across

both the prefill and decoding phases. Notably, we observe that het-

erogeneous deployment also yields benefits for the prefill phase.

We present the throughput per unit power under heterogeneous

deployment. Additionally, we present the median and tail latency

and throughput of M2N communication.

7.2 End-to-end Experiment
Homogeneous deployment.We first evaluate the performance of

MegaScale-Infer with different MoE models on NVIDIA 80GB Am-

pere GPUs. Both vLLM and TensorRT-LLM serve Mixtral 8x22B and

DBRX on a single node and serve Scaled-MoE across two nodes. The

results are presented in Figure 8. Since vLLM deploys and serves

the model as a whole, the batch size for the expert modules tends to

be small, resulting in low GPU utilization. TensorRT-LLM achieves

higher throughput than vLLM through custom kernel optimiza-

tions, but it also adopts a holistic service approach, which means it

cannot avoid the issue of low GPU utilization in the FFN modules.

By separating the attention and FFN modules, MegaScale-Infer ag-

gregates batched requests from multiple attention modules, which

increases the FFN batch size. This shift helps transition FFN from

600

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

Mixtral 8x22B DBRX Scaled-MoE
(a) Normalized Decoding Throughput

0

400

800

1200

Th
ro

ug
hp

ut
 p

er
 C

os
t (

to
ke

ns
/s

)

Mixtral 8x22B DBRX Scaled-MoE
(b) Time Between Tokens

0

40

80

120

160

La
te

nc
y

(m
s)

Mixtral 8x22B DBRX Scaled-MoE
(c) Normalized End-to-End Throughput

0

100

200

300

Th
ro

ug
hp

ut
 p

er
 C

os
t (

to
ke

ns
/s

)

vLLM (L40S)
TensorRT-LLM (L40S)

vLLM (H20)
TensorRT-LLM (H20)

MegaScale-Infer (H20-L40S)

Figure 9: Performance of MegaScale-Infer on NVIDIA H20 and L40S GPUs.

being memory-intensive to compute-intensive, thereby improv-

ing GPU utilization. As a result, MegaScale-Infer achieves 2.56×
and 1.28× higher per-GPU decoding throughput than vLLM and

TensorRT-LLM, as shown in Figure 8(a). For Scaled-MoE, the ex-

pensive inter-node communication overhead, coupled with certain

implementation limitations in a multi-node environment, results in

even lower GPU utilization for the baselines. In contrast, MegaScale-

Infer is deployed across multiple nodes for all models due to its

disaggregated deployment, but it overlaps computation and com-

munication through the design of ping-pong pipeline parallelism.

Consequently, MegaScale-Infer improves the decoding throughput

per GPU for Scaled-MoE by 7.11× and 1.90× compared to vLLM

and TensorRT-LLM, respectively.

Figure 8(b) shows the mean time between tokens of MegaScale-

Infer and the baselines corresponding to the decoding throughput

in Figure 8(a). Due to the disaggregation of attention and expert

modules, MegaScale-Infer introduces cross-node communication at

every layer, which affects latency. Ping-pong pipeline parallelism,

while overlapping communication with computation across micro-

batches, does not reduce the per-token latency for an individual

micro-batch. Aiming for full GPU utilization, this approach may

even incur additional latency, as indicated by constraint 3. Never-

theless, MegaScale-Infer effectively mitigates the communication

overhead by employing a high-performance M2N communication

library. As a result, MegaScale-Infer achieves a time between tokens

comparable to those of the baseline systems.

Figure 8(c) shows the end-to-end per-GPU throughput including

the prefill phase. As the prefill phase is predominantly compute-

bound, our approach does not yield performance improvements

for this stage under homogeneous deployments. Consequently,

when the prefill phase is taken into account, the overall end-to-end

performance gain is less pronounced compared to the decoding

phase alone. Nevertheless, MegaScale-Infer still achieves up to a

1.18× improvement in throughput, demonstrating its effectiveness

in end-to-end scenarios.

Heterogeneous deployment. To demonstrate the benefits of

MegaScale-Infer under heterogeneous deployment, we build a clus-

ter consisting of NVIDIA H20 and L40S GPUs and conduct experi-

ments on it. Since neither vLLMnor TensorRT-LLM supports hetero-

geneous deployment, we separately evaluate them on H20 and L40S.

To fully leverage the capacity of each GPU type, MegaScale-Infer

assigns H20 for attention modules and L40S for experts. Figure 9(a)

presents the performance measured by decoding throughput per

unit cost. Here we define cost with the normalized purchase price

Mixtral 8x22B DBRX Scaled-MoE
(a) Normalized Decoding Throughput

0

1

2

3

4

5

Th
ro

ug
hp

ut
 p

er
 P

ow
er

 (t
ok

en
s/

s)

Mixtral 8x22B DBRX Scaled-MoE
(b) Normalized End-to-End Throughput

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 p

er
 P

ow
er

 (t
ok

en
s/

s)

vLLM (L40S)
TensorRT-LLM (L40S)

vLLM (H20)
TensorRT-LLM (H20)

MegaScale-Infer (H20-L40S)

Figure 10: Throughput per unit power of MegaScale-Infer on
NVIDIA H20 and L40S GPUs.

as shown in Table 3, which can easily be replaced by the rental

price for cloud service users. Due to the 48GB memory capacity of

L40S, all models in both baselines require a multi-node setup. In

addition, the relatively weak intra-node and inter-node communi-

cation performance of the L40S leads to low GPU utilization for

both vLLM and TensorRT-LLM. In contrast, H20 is more suitable for

LLM serving due to its large memory capacity, higher bandwidth,

and faster communication. As a result, vLLM and TensorRT-LLM

achieve higher decoding throughput on H20. However, the L40S

also offers unique advantages, particularly its high compute power

per unit cost, making it well-suited for executing compute-intensive

tasks. Our heterogeneous deployment simultaneously maximizes

the advantages of the high bandwidth of H20 and the cost-effective

compute power of L40S. This results in an improvement of up to

3.24× and 1.86× on the unit cost decoding throughput compared

to vLLM and TensorRT-LLM on H20, respectively.

The latency results corresponding to Figure 9(a) are shown in

Figure 9(b). Similar to the homogeneous deployment scenario, the

mean time between tokens under heterogeneous deployment re-

mains comparable to those of the baselines. Moreover, when com-

pared to the baselines deployed exclusively on L40S GPUs, our

approach achieves slightly improved latency performance.

We further apply heterogeneous deployment to the prefill phase

and report the end-to-end throughput results, including prefill com-

putation, in Figure 9(c). While heterogeneous deployment does

not enhance resource utilization during the prefill phase, it effec-

tively reduces inference costs by offloading expert computations

to the more cost-efficient L40S GPUs. As a result, when evaluat-

ing end-to-end performance across both the prefill and decoding

phases, MegaScale-Infer achieves up to a 1.66× improvement in

throughput per unit cost compared to the baselines. In summary,

MegaScale-Infer is particularly well-suited for heterogeneous de-

ployment, as it significantly lowers inference costs across the entire

serving pipeline.

601

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

2K 32K 512K 8M
Data Size

(a) M2N Median Latency

10
0

10
1

10
2

10
3

10
4

10
5

La
te

nc
y

(u
s)

2K 32K 512K 8M
Data Size

(b) M2N P99 Latency

10
0

10
1

10
2

10
3

10
4

10
5

La
te

nc
y

(u
s)

2K 32K 512K 8M
Data Size

(c) M2N Throughput

0

50

100

150

200

Th
ro

ug
hp

ut
 (G

bp
s)

NCCL MegaScale-Infer

Figure 11: Performance of M2N communication under different data sizes.

4 8 16 32
Number of M and N

(a) M2N Median Latency

0

150

300

450

600

750

La
te

nc
y

(u
s)

4 8 16 32
Number of M and N

(b) M2N P99 Latency

0

400

800

1200

1600
La

te
nc

y
(u

s)

4 8 16 32
Number of M and N
(c) M2N Throughput

0

50

100

150

200

Th
ro

ug
hp

ut
 (G

bp
s)

NCCL MegaScale-Infer

Figure 12: Performance of M2N communication under different number of senders (M) and receivers (N).

We also evaluate the impact of heterogeneous deployment on

power, and the results are presented in Figure 10. Since the H20

and L40S GPUs each offer lower energy consumption per unit of

bandwidth and compute, respectively, heterogeneous deployment

across these two GPU types can also improve throughput per unit

power. This improvement is observed in both the decoding and

prefill phases. As shown in Figure 10(a) and (b), our system achieves

1.80× and 1.72× higher decoding and end-to-end throughput per

unit power, respectively, compared to the baseline.

7.3 Performance of M2N Communication
We evaluate the performance ofM2N communication under varying

data sizes and different numbers of senders and receivers. Each

sender and receiver is a GPU equipped with a 200Gbps NIC. The

data size is defined as the bytes transmitted from one sender to

one receiver. In our MoE serving scenarios, data sizes range from

hundreds of kilobytes. For instance, serving Mixtral 8x22B with a

micro-batch size of 128 and tensor parallelism of 2 for attention

nodes requires each attention GPU to send an average of 196,608

bytes to each expert GPU, calculated as #𝑡𝑜𝑘𝑒𝑛𝑠 × 𝑡𝑜𝑝𝑘/#𝑒𝑥𝑝𝑒𝑟𝑡𝑠 ×
ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒)/𝑇𝑃 = 128 × 2/8 × 6144 × 2/2.

Figure 11 illustrates how the latency and throughput of M2N

vary with different data sizes. In this experiment, we set the number

of senders and receivers to 8. Overall, MegaScale-Infer achieves

lower latency and higher throughput than NCCL across all data

sizes. NCCL incurs substantial overhead for small data sizes due

to additional data copies and group operations. To mitigate these

overheads, we design and implement a highly optimized commu-

nication library, resulting in up to an 80.8% reduction in median

latency, as shown in Figure 11(a). Additionally, NCCL suffers from

high tail latency due to its inherent instability. We address this issue

by eliminating GPU synchronization and group initialization. As

depicted in Figure 11(b), we achieve up to 96.2% reduction in P99

latency compared to NCCL. These optimizations enable MegaScale-

Infer to improve throughput by up to 9.9×. For commonly used data

sizes in model serving, such as 256KB, MegaScale-Infer achieves

improvements of 68.2% in median latency, 92.9% in tail latency, and

a 4.2× increase in throughput.

We also scale the number of senders (M) and receivers (N) while

keeping the data size fixed at 256 KB. The results are shown in

Figure 12. MegaScale-Infer consistently outperforms NCCL across

all configurations. As M and N increase, NCCL experiences greater

instability, resulting in higher tail latency. In contrast, our M2N li-

brary maintains stable performance through comprehensive traffic-

oriented optimization, particularly congestion control fine-tuning.

This stability enables MegaScale-Infer to reduce tail latency by

54.7%-96.9% and improve throughput by 3.3×-5.8×.

7.4 Ablation Study
Effectiveness of disaggregated expert parallelism and M2N
optimization. Figure 13 illustrates the performance gains achieved

on Ampere GPUs through disaggregated expert parallelism and

M2N communication optimizations. We select vLLM as the base-

line, as it colocates attention and expert modules, and its kernel

performance—particularly for matrix multiplication and attention

operations—is comparable to our implementation. By adopting a

disaggregated architecture, requests from multiple attention mod-

ules can be aggregated, thereby increasing the effective batch size

on the expert side and improving the computational efficiency of

expert modules. As a result, even when using NCCL as the backend

for M2N communication, the disaggregated approach achieves up

to a 4.66× throughput improvement over the colocated baseline. By

602

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

Mixtral 8x22B DBRX Scaled-MoE
0

500

1000

1500

2000

Th
ro

ug
hp

ut
 p

er
 G

P
U

 (t
ok

en
s/

s)

Colocated Dist.+NCCL Dist.+M2N

Figure 13: Effectiveness of disaggregated expert parallelism
and M2N optimization.

Mixtral 8x22B DBRX Scaled-MoE0

400

800

1200

1600

Th
ro

ug
hp

ut
 p

er
 G

P
U

 (t
ok

en
s/

s)

m=1 m=2 m=3 m=4

Figure 14: Normalized decoding throughput under different
numbers of micro-batch.

leveraging our optimized M2N communication library, we further

reduce communication overhead, enabling the M2N communica-

tion time of a single micro-batch to fall below its computation time

(satisfying constraint 2). As a result, communication can be fully

overlapped with computation through the use of the ping-pong

pipeline, leading to an additional throughput improvement of up

to 1.53×.
Effectiveness of ping-pong pipeline parallelism. First, we con-
duct an ablation study by varying the number of micro-batches (𝑚)

while keeping the micro-batch size constant. To fully demonstrate

the benefits of ping-pong pipeline parallelism, we adopt the optimal

deployment plan where the computation times of attention and

FFN modules are nearly balanced. Figure 14 presents the evaluation

results on Ampere GPUs. When𝑚 = 1, ping-pong pipeline paral-

lelism is disabled, leading to idle periods for either attention or FFN

module while the other is computing. This results in relatively low

decoding throughput across all models. Increasing𝑚 from 1 to 2

enables both modules to simultaneously process two micro-batches

in a ping-pong manner, significantly reducing idle time and improv-

ing throughput by 1.9×. While𝑚 = 2 is ideally sufficient to achieve

high GPU utilization, inter-node communication overhead remains

a significant factor. By increasing𝑚 to 3, we enable the overlap-

ping of communication and computation, resulting in throughput

improvements of 1.10×, 1.28×, and 1.38× for Mixtral 8x22B, DBRX,

and Scaled-MoE, respectively. Larger models require more GPUs

for serving, leading to increased communication overhead. Conse-

quently, increasing𝑚 provides more significant benefits for larger

models. Given the high network bandwidth in our testbed, further

increasing𝑚 yields only marginal improvements.

Influence of deployment plan.We further investigate the impact

of the deployment plan using DBRX as a case study by varying

the degree of data parallelism (DP), i.e., the number of replicas

for the attention nodes. The number of micro-batches is fixed at

1 2 4 8 12 16
#DP of Attention

0

25

50

75

100

125

La
te

nc
y

(m
s/

to
ke

n)

(a)

1 2 4 8 12 16
#DP of Attention

0

400

800

1200

1600

Th
ro

ug
hp

ut
 p

er
 G

P
U

 (t
ok

en
s/

s)

(b)

Figure 15: Performance ofDBRXunder differentDP degree of
attention. (a) Per output token latency. (b) Decoding through-
put normalized by number of GPUs.

3 to maximize the benefits of ping-pong pipeline parallelism. Fig-

ure 15 shows the resulting latency and throughput. With a small

DP degree, each expert processes fewer tokens, leading to a shorter

computation time for the FFN module compared to the attention.

As a result, expert nodes experience significant idle time, even with

ping-pong pipeline parallelism employed. As shown in Figure 15(a),

the latency remains constant as the DP degree increases from 1 to 4,

suggesting that the attention module is the bottleneck. Meanwhile,

Figure 15(b) demonstrates linear throughput scaling within this

range, further confirming that the bottleneck is in the attention

module. When the DP degree reaches 8, the computation times

for both attention and FFN become roughly equal, allowing both

modules to stay busy during inference. As seen in Figure 15, the

latency in this case is similar to that with a lower DP degree, while

the normalized decoding throughput reaches its peak. As the DP

degree continues to increase, expert nodes are assigned more to-

kens, causing the bottleneck to shift from attention to experts. This

leads to higher latency and reduced normalized throughput, as

attention nodes experience significant idle time. This experiment

showcases the importance of optimizing the deployment plan. Only

certain deployment plans can minimize idle time and maximize

GPU utilization.

8 Deployment Experience
MegaScale-Infer has been deployed in the company’s production

inference services and is operating on a cluster with nearly 10,000

GPUs. Under heterogeneous deployment, it reduces the cost of

serving the same traffic by 1.5–2.0×, depending on the workload

characteristics.

Expert balance. In real-world deployment, we gained additional

insights into expert load distribution. Figure 16(a) illustrates the

number of tokens processed by each expert across four model layers

for a single batch. There is a significant imbalance in the load dis-

tribution, with some experts being substantially hotter than others.

Further analysis of different phases reveals additional patterns. As

shown in Figures 16(b) and 16(c), we sample four batches executed

within a short time window and measure the load on all experts in

a specific layer. During the decoding phase, expert load remains

relatively stable across batches, whereas in the prefill phase, it fluc-

tuates more significantly. These observations motivate us to adopt

a static or periodic expert load balancing strategy during decoding,

603

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

0 16 32 48 64 80 96 112 128
Expert

0

500

1000

1500

2000

To
ke

n
C

ou
nt layer 10

layer 20
layer 30
layer 40

(a) Received token count of each expert in a batch.

0 16 32 48 64 80 96 112 128
Expert

0

5

10

15

R
at

io
 (%

)

Batch 0
Batch 1

Batch 2
Batch 3

(b) Received token ratio of each expert during decoding.

0 16 32 48 64 80 96 112 128
Expert

0

5

10

15

R
at

io
 (%

)

Batch 0
Batch 1

Batch 2
Batch 3

(c) Received token ratio of each expert during prefill.

Figure 16: Expert load distribution in real traffic.

while employing more frequent expert plan adjustments in the

prefill phase.

Attention balance. We also observe load imbalance on the atten-

tion side. Due to variations in sequence lengths, attention nodes can

experience significantly different computation times even when

processing batches of the same size. Since MegaScale-Infer per-

forms frequent synchronization across all nodes, such imbalances

can introduce bubbles and degrade overall system efficiency. To

mitigate this issue, we profile the runtime of key operators under

varying sequence lengths and batch sizes to estimate the compu-

tation time of a given batch. We then compose the batch on each

attention node to match a predefined target execution time, thereby

balancing the workload across nodes.

9 Related Work
LLM serving. Recently, numerous works have been proposed to

optimize LLM inference. Orca [79] introduces iteration-level sched-

uling to improve throughput. vLLM [51] enhances KV cache man-

agement through PagedAttention for greater efficiency. Sarathi-

Serve [23] addresses the throughput-latency tradeoff by splitting

prefill requests into chunks and batching them with ongoing decod-

ing requests. LoongServe [75] leverages elastic sequence parallelism

to efficiently serve long-context requests in dynamic workloads. For

serving multiple instances, Llumnix [68], ServerlessLLM [37], and

dLoRA [76] propose request migration techniques to enable load

balancing and reduce latency. However, their approaches primarily

focus on dense models, often overlooking the distinct challenges

introduced by the sparsity of large-scale MoE models.

Resource disaggregation. Disaggregating hardware resources

into separate resource pools allows for independent scaling, result-

ing in more efficient deployments. Several systems [40, 64] adopt

this approach. In the context of LLM serving, the distinct character-

istics of the prefill and decoding phases make their disaggregation

a widely used solution [44, 60, 61, 67, 82]. MegaScale-Infer also em-

ploys this approach and further optimizes MoE serving efficiency

during decoding by disaggregating attention and FFN modules.

FASTDECODE [42], Lamina [31], and MoE-Lightning [28] offload

attention computation to cheaper devices, such as CPU, during

decoding. However, offloading results in higher latency, and the

challenges posed by MoE’s sparsity remain unresolved.

MoE optimization. MoE has gained popularity for its ability to

reduce computational complexity [35, 36, 52, 62, 77]. Currently, two

primary considerations in optimizing MoE training and inference

are load balancing [32, 53] and efficient communication [46, 53, 55,

62]. Serving large-scale MoE with limited resources also demands

efficient offloading and preloading [28, 47]. In this work, we focus on

large-scale distributed serving, addressing the unique inefficiencies

introduced by MoE’s sparsity through disaggregation.

Collective communication forML.Distributedmachine learning

jobs heavily rely on high-performance collective communications,

such as all-reduce and all-to-all, to achieve high throughput and

low latency. NVIDIA NCCL [12] is the most popular collective

communication library in both industry and academia. SCCL [27],

TACCL [63], and TE-CCL [56] propose automatic synthesis of opti-

mal collective communication algorithms tailored to distinct hard-

ware and topologies. CoCoNET [48] and Centauri [30] improve

performance by overlapping communication with computation in

distributed machine learning. The disaggregation of attention and

FFN in MoE necessitates a new form of collective communication,

i.e., M2N. We identify and eliminate the overhead and instability

present in existing solutions.

10 Conclusion
In this paper, we present MegaScale-Infer, a system that disaggre-

gates the attention and FFN modules to enhance the efficiency

and cost-effectiveness of large-scale MoE serving. Leveraging this

disaggregation architecture, MegaScale-Infer builds the optimal

deployment plan with a ping-pong parallelism strategy and a high-

performance M2N communication library. The evaluation results

across diverse models and hardware demonstrate that MegaScale-

Infer achieves up to 1.9× throughput improvement over state-of-

the-art systems, highlighting the effectiveness of our design and

implementation.

Acknowledgement
We thank our shepherd, Paolo Costa, and the anonymous review-

ers for their valuable feedback and suggestions. This work was

supported in part by the National Key Research and Development

Program of China under Grant 2022YFB4500700, the Scientific Re-

search Innovation Capability Support Project for Young Faculty

under Grant ZYGXQNJSKYCXNLZCXM-I1, the Fundamental Re-

search Funds for the Central Universities, Peking University, and

the National Natural Science Foundation of China under Grant

62172008 and Grant 62325201. Xuanzhe Liu, Xin Jin and Xin Liu are

the corresponding authors. Ruidong Zhu, Chao Jin, Xuanzhe Liu,

and Xin Jin are also with the Key Laboratory of High Confidence

Software Technologies (Peking University), Ministry of Education.

604

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

References
[1] 2022. NCCL GDR Flush Operation. https://github.com/NVIDIA/nccl/issues/683.

(2022).

[2] 2022. NVIDIA GPUDirect async. https://developer.nvidia.com/blog/improving-

network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-

and-gpudirect-async/. (2022).

[3] 2025. ChatGPT. https://chatgpt.com/. (2025).

[4] 2025. CUDA driver API: cuStreamWaitValue32. https://docs.nvidia.com/cuda/

cuda-driver-api/group__CUDA__MEMOP.html#group__CUDA__MEMOP_

1g629856339de7bc6606047385addbb398. (2025).

[5] 2025. CUDA runtime API: cudaEventQuery. https://docs.nvidia.com/cuda/cuda-

runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT_

1g2bf738909b4a059023537eaa29d8a5b7. (2025).

[6] 2025. Cursor. https://www.cursor.com/. (2025).

[7] 2025. DeepEP: an efficient expert-parallel communication library. https://github.

com/deepseek-ai/DeepEP. (2025).

[8] 2025. Gemini. https://gemini.google.com/app. (2025).

[9] 2025. GitHub Copilot. https://github.com/features/copilot. (2025).

[10] 2025. NCCL Data Transfer Between GPU and Proxy. https://github.com/NVIDIA/

nccl/issues/852. (2025).

[11] 2025. NCCL Group Operations. https://docs.nvidia.com/deeplearning/nccl/user-

guide/docs/usage/groups.html. (2025).

[12] 2025. NCCL Optimized primitives for inter-GPU communication. https://github.

com/NVIDIA/nccl/. (2025).

[13] 2025. NCCL User-buffer Registration. https://docs.nvidia.com/deeplearning/nccl/

user-guide/docs/usage/bufferreg.html. (2025).

[14] 2025. NVIDIA Available RDMA Operations. https://docs.nvidia.com/networking/

display/rdmaawareprogrammingv17/available+communication+operations.

(2025).

[15] 2025. NVIDIA GDR Copy. https://github.com/NVIDIA/gdrcopy. (2025).

[16] 2025. NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect. (2025).

[17] 2025. NVIDIA PTX. https://developer.nvidia.com/blog/understanding-ptx-the-

assembly-language-of-cuda-gpu-computing/. (2025).

[18] 2025. NVIDIA RDMAKeyConcepts. https://docs.nvidia.com/networking/display/

rdmaawareprogrammingv17/key+concepts. (2025).

[19] 2025. NVIDIA Streaming multiprocessors. https://docs.nvidia.com/cuda/ampere-

tuning-guide/index.html#streaming-multiprocessor. (2025).

[20] 2025. NVIDIA Triton Inference Server. https://developer.nvidia.com/triton-

inference-server. (2025).

[21] 2025. OFED Performance Tests. https://github.com/linux-rdma/perftest. (2025).

[22] 2025. Torch Custom C++ and CUDA Extensions. https://pytorch.org/tutorials/

advanced/cpp_extension.html. (2025).

[23] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,

Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ramjee. 2024. Taming

Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. In USENIX
OSDI.

[24] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico

Lebrón, and Sumit Sanghai. 2023. Gqa: Training generalized multi-query trans-

former models from multi-head checkpoints. arXiv preprint arXiv:2305.13245
(2023).

[25] Anthropic. 2025. Introducing the next generation of Claude. https://www.

anthropic.com/news/claude-3-family. (2025).

[26] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan. 2006. The

influence of operating systems on the performance of collective operations at

extreme scale. In IEEE International Conference on Cluster Computing.
[27] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz,

Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing optimal collective algorithms.

In ACM PPoPP.
[28] Shiyi Cao, Shu Liu, Tyler Griggs, Peter Schafhalter, Xiaoxuan Liu, Ying Sheng,

Joseph E Gonzalez, Matei Zaharia, and Ion Stoica. 2024. MoE-Lightning: High-

Throughput MoE Inference on Memory-constrained GPUs. arXiv preprint
arXiv:2411.11217 (2024).

[29] Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin

Zhong, Xuanrun Zhang, Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin,

Xin Jin, and Xin Liu. 2024. Flux: Fast software-based communication overlap on

gpus through kernel fusion. arXiv preprint arXiv:2406.06858 (2024).
[30] Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun, Xingcheng

Zhang, and Chao Yang. 2024. Centauri: Enabling Efficient Scheduling for

Communication-Computation Overlap in Large Model Training via Communica-

tion Partitioning. In ACM ASPLOS.
[31] Shaoyuan Chen, Yutong Lin, Mingxing Zhang, and Yongwei Wu. 2024. Efficient

and Economic Large Language Model Inference with Attention Offloading. arXiv
preprint arXiv:2405.01814 (2024).

[32] Weihao Cui, Zhenhua Han, Lingji Ouyang, YichuanWang, Ningxin Zheng, Lingx-

iao Ma, Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, Lidong Zhou, Quan Chen,

Haisheng Tan, and Minyi Guo. 2023. Optimizing dynamic neural networks with

brainstorm. In USENIX OSDI.

[33] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-

tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems (2022).

[34] DeepSeek-AI, Aixin Liu, Bei Feng, BinWang, BingxuanWang, Bo Liu, Chenggang

Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli

Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting

Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui

Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong

Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai

Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,

Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua

Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng

Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe

Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang

Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,

Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu

Sun, W. L. Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun

Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong

Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiaotao Nie,

Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi

Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu,

Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui

Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang,

Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo,

Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan,

Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang,

Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng

Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and Ziwei

Xie. 2024. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts

Language Model. arXiv preprint arXiv:2405.04434 (2024).
[35] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,

Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun

Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,

Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian

Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi

Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie

Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin

Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong

Wang, Liyue Zhang, Meng Li, MiaojunWang, Mingchuan Zhang, Minghua Zhang,

Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,

Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi

Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi

Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,

Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping

Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L.

Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun

Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,

Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang,

Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu,

Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu

Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X.

Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao,

Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi,

Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang

Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang,

Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting

Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren,

Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda

Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan,

Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu,

Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.

2024. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024).

[36] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:

Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research (2022).

[37] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov, Yu-

vraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-Latency Serverless Inference

for Large Language Models. In USENIX OSDI.
[38] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-

hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,

Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo

Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun

Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste

Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya

Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe

Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,

Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,

605

https://github.com/NVIDIA/nccl/issues/683
https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://chatgpt.com/
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html##group__CUDA__MEMOP_1g629856339de7bc6606047385addbb398
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html##group__CUDA__MEMOP_1g629856339de7bc6606047385addbb398
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html##group__CUDA__MEMOP_1g629856339de7bc6606047385addbb398
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html##group__CUDART__EVENT_1g2bf738909b4a059023537eaa29d8a5b7
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html##group__CUDART__EVENT_1g2bf738909b4a059023537eaa29d8a5b7
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html##group__CUDART__EVENT_1g2bf738909b4a059023537eaa29d8a5b7
https://www.cursor.com/
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://gemini.google.com/app
https://github.com/features/copilot
https://github.com/NVIDIA/nccl/issues/852
https://github.com/NVIDIA/nccl/issues/852
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html
https://github.com/NVIDIA/nccl/
https://github.com/NVIDIA/nccl/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/bufferreg.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/bufferreg.html
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/available+communication+operations
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/available+communication+operations
https://github.com/NVIDIA/gdrcopy
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/blog/understanding-ptx-the-assembly-language-of-cuda-gpu-computing/
https://developer.nvidia.com/blog/understanding-ptx-the-assembly-language-of-cuda-gpu-computing/
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/key+concepts
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/key+concepts
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html##streaming-multiprocessor
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html##streaming-multiprocessor
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://github.com/linux-rdma/perftest
https://pytorch.org/tutorials/advanced/cpp_extension.html
https://pytorch.org/tutorials/advanced/cpp_extension.html
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego

Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,

Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank

Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-

tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,

Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,

Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon

Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer

van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,

Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo

Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasu-

den Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth

Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley

Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der

Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,

Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,

Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsim-

poukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike

Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,

Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier

Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-

sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh

Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,

Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Ro-

han Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,

Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,

Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey

Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye

Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer

Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodin-

sky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas

Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj

Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,

Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan

Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang

Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang,

Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen

Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengx-

ing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam

Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,

Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,

Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Al-

varado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan,

Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf,

Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman,

Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,

Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden

Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt

Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang,

Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris

Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel

Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David,

Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin

Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani,

Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan

Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos,

Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Med-

ina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant

Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,

Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb,

Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan

Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena

Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet

Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,

Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe

Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh

Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandel-

wal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena,

Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen,

Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,

Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani,

Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias

Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu,

Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,

Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Her-

moso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,

Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo,

Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman

Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin

Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,

Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yu-

vraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,

Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah

Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta,

Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun

Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji

Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng,

Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,

Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chin-

tala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan

Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj

Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara

Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews,

Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Mon-

tanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad

Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, WenchenWang, Wen-

wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan

Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye

Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu

Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito,

Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024.

The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
[39] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan

Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti,

Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms, Robert B. Ross,

Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,

Mingzhe Hao, and Huaicheng Li. 2018. Fail-Slow at Scale: Evidence of Hardware

Performance Faults in Large Production Systems. In USENIX Conference on File
and Storage Technologies.

[40] Zhiyuan Guo, Zijian He, and Yiying Zhang. 2023. Mira: A program-behavior-

guided far memory system. In ACM SOSP.
[41] Yueming Hao, Nikhil Jain, Rob F. Van der Wijngaart, Nirmal R. Saxena, Yuanbo

Fan, and Xu Liu. 2023. Drgpu: A top-down profiler for gpu applications. In

ACM/SPEC International Conference on Performance Engineering.
[42] Jiaao He and Jidong Zhai. 2024. FastDecode: High-Throughput GPU-Efficient

LLM Serving using Heterogeneous Pipelines. arXiv preprint arXiv:2403.11421
(2024).

[43] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Characterizing

the influence of system noise on large-scale applications by simulation. In The
International Conference for High Performance Computing, Networking, Storage,
and Analysis.

[44] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang

Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou

Shan. 2024. Inference without interference: Disaggregate llm inference for mixed

downstream workloads. arXiv preprint arXiv:2401.11181 (2024).
[45] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. 2019. Gpipe: Efficient training of giant neural networks using pipeline

parallelism. Neural Information Processing Systems (2019).
[46] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong

Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang,

Mao Yang, and Yongqiang Xiong. 2023. Tutel: Adaptive mixture-of-experts at

scale. Conference on Machine Learning and Systems (2023).
[47] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao,

and Mao Yang. 2024. Pre-gated moe: An algorithm-system co-design for fast and

scalable mixture-of-expert inference. In ACM/IEEE ISCA.
[48] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed

Maleki, Youshan Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi.

2022. Breaking the computation and communication abstraction barrier in

distributed machine learning workloads. In ACM ASPLOS.
[49] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,

Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin

Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,

Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang

Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.

MegaScale: Scaling large language model training to more than 10,000 GPUs. In

USENIX NSDI.
[50] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).
[51] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,

Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient

memory management for large language model serving with pagedattention. In

ACM SOSP.
[52] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,

Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:

606

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal R. Zhu, et al

Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668 (2020).

[53] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. 2023. Accelerating

distributed MoE training and inference with lina. In USENIX ATC.
[54] Bin Lin, Chen Zhang, Tao Peng, Hanyu Zhao,Wencong Xiao, Minmin Sun, Anmin

Liu, Zhipeng Zhang, Lanbo Li, Xiafei Qiu, Shen Li, Zhigang Ji, Tao Xie, Yong

Li, and Wei Lin. 2024. Infinite-llm: Efficient llm service for long context with

distattention and distributed kvcache. arXiv preprint arXiv:2401.02669 (2024).
[55] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. 2023. Janus: A unified distributed

training framework for sparse mixture-of-experts models. In ACM SIGCOMM.

[56] Xuting Liu, Behnaz Arzani, Siva Kesava Reddy Kakarla, Liangyu Zhao, Vincent

Liu, Miguel Castro, Srikanth Kandula, and Luke Marshall. 2024. Rethinking

machine learning collective communication as a multi-commodity flow problem.

In ACM SIGCOMM.

[57] NVIDIA. 2024. NVIDIA TensorRT-LLM. https://docs.nvidia.com/tensorrt-llm/

index.html. (2024).

[58] OpenAI. 2025. Introducing ChatGPT search. https://openai.com/index/

introducing-chatgpt-search. (2025).

[59] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam

Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal-

com, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello,

Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff,

Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,

Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brit-

tany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis

Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben

Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah

Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien

Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet,

Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada

Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson,

Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor-

don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane

Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,

Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,

Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu

Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin,

Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali,

Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,

Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,

Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-

stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan,

Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly

Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,

Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,

BiancaMartin, KatieMayer, AndrewMayne, BobMcGrew, ScottMayerMcKinney,

Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta,

Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco,

Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,

Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo,

Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino,

Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy

Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de

Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael,

Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris

Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,

Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri

Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish

Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla

Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon

Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Ben-

jamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie

Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil

Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry

Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea

Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan

Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng,

Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich,

Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,

Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,

Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,

William Zhuk, and Barret Zoph. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774 (2023).

[60] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed

Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient generative llm inference

using phase splitting. In ACM/IEEE ISCA.

[61] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin

Zheng, and Xinran Xu. 2024. Mooncake: Kimi’s KVCache-centric Architecture

for LLM Serving. arXiv preprint arXiv:2407.00079 (2024).
[62] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani

Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-

MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. arXiv preprint arXiv:2201.05596 (2022).
[63] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musu-

vathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. 2023.

TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches.

In USENIX NSDI.
[64] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A

disseminated, distributed OS for hardware resource disaggregation. In USENIX
OSDI.

[65] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter

language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).
[66] Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D. Sinclair,

and Shivaram Venkataraman. 2022. Not All GPUs Are Created Equal: Character-

izing Variability in Large-Scale, Accelerator-Rich Systems. In The International
Conference for High Performance Computing, Networking, Storage, and Analysis.

[67] Foteini Strati, Sara McAllister, Amar Phanishayee, Jakub Tarnawski, and Ana

Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-tolerant Generative

LLM Serving. In International Conference on Machine Learning (ICML).
[68] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li,

and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large Language Model

Serving. In USENIX OSDI.
[69] Xiongchao Tang, Jidong Zhai, Xuehai Qian, Bingsheng He, Wei Xue, and Wen-

guang Chen. 2018. Vsensor: leveraging fixed-workload snippets of programs for

performance variance detection. In ACM PPoPP.
[70] Mistral AI team. 2024. Mixtral 8x22B. https://mistral.ai/news/mixtral-8x22b.

(2024).

[71] Mosaic Research Team. 2024. Introducing DBRX: A New State-of-the-Art Open

LLM. https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-

llm. (2024).

[72] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-

ple. 2023. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971 (2023).

[73] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-

rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia

Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,

Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,

Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,

Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,

Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross

Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,

Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-

driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:

Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288
(2023).

[74] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an

insightful visual performance model for multicore architectures. Commun. ACM
(2009).

[75] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu, and Xin

Jin. 2024. LoongServe: Efficiently Serving Long-Context Large Language Models

with Elastic Sequence Parallelism. In ACM SOSP.
[76] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin.

2024. dLoRA: Dynamically Orchestrating Requests and Adapters for LoRA LLM

Serving. In USENIX OSDI.
[77] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,

Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni,

Ruoming Pang, Noam Shazeer, ShiboWang, TaoWang, Yonghui Wu, and Zhifeng

Chen. 2021. Gspmd: general and scalable parallelization for ml computation

graphs. arXiv preprint arXiv:2105.04663 (2021).
[78] Xin You, Zhibo Xuan, Hailong Yang, Zhongzhi Luan, Yi Liu, and Depei Qian. 2024.

GVARP: Detecting Performance Variance on Large-Scale Heterogeneous Systems.

In The International Conference for High Performance Computing, Networking,
Storage, and Analysis.

[79] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon

Chun. 2022. Orca: A distributed serving system for Transformer-Based generative

models. In USENIX OSDI.

607

https://docs.nvidia.com/tensorrt-llm/index.html
https://docs.nvidia.com/tensorrt-llm/index.html
https://openai.com/index/introducing-chatgpt-search
https://openai.com/index/introducing-chatgpt-search
https://mistral.ai/news/mixtral-8x22b
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

MegaScale-Infer: Efficient Mixture-of-Experts Model Serving with Disaggregated Expert Parallelism SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

[80] Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Huazuo Gao, Jiashi Li,

Liyue Zhang, Panpan Huang, Shangyan Zhou, Shirong Ma, Wenfeng Liang, Ying

He, Yuqing Wang, Yuxuan Liu, and Y. X. Wei. 2025. Insights into DeepSeek-V3:

Scaling Challenges and Reflections on Hardware for AI Architectures. arXiv
preprint arXiv:2505.09343 (2025).

[81] Liyan Zheng, Jidong Zhai, Xiongchao Tang, Haojie Wang, Teng Yu, Yuyang Jin,

Shuaiwen Leon Song, and Wenguang Chen. 2022. Vapro: performance variance

detection and diagnosis for production-run parallel applications. In ACM PPoPP.
[82] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu,

Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and Decoding

for Goodput-optimized Large Language Model Serving. In USENIX OSDI.
[83] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. 2021. Gpa:

A gpu performance advisor based on instruction sampling. In IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization.

608

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LLM Inference Characteristics
	2.2 LLM Serving at Scale
	2.3 Problems in Large-scale MoE Serving
	2.4 Opportunities and Challenges

	3 MegaScale-Infer Overview
	4 Disaggregated Expert Parallelism
	4.1 Ping-Pong Pipeline Parallelism
	4.2 Deployment Plan Search
	4.3 Heterogeneous Deployment

	5 High-Performance M2N Communication
	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-end Experiment
	7.3 Performance of M2N Communication
	7.4 Ablation Study

	8 Deployment Experience
	9 Related Work
	10 Conclusion
	References

