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Abstract
Reinforcement Learning (RL) has emerged as a core post-
training paradigm for LLMs, which involves two main stages:
rollout and training. The LLMs first generate new samples in
the rollout stage, which are then used to update the model in
the training stage. Scaling RL is challenging due to two pri-
mary factors: (𝑖) The long-tail distribution of output lengths
during the rollout stage, which causes GPU idling across par-
allel rollout instances; (𝑖𝑖) the memory-bandwidth-bounded
nature of decoding iterations, which results in low GPU uti-
lization for long-tail samples—a bottleneck that does not
scale linearly with additional computational resources.

We propose to address these challenges by applying spec-
ulative decoding within the rollout stage. Applying specu-
lative decoding to RL remains non-trivial. Algorithmically,
RL for LLMs is highly sensitive to the quality of samples
generated during rollouts. From a systems perspective, and
in contrast to inference serving, the RL rollout stage must
contend with long-tailed sample distributions and operate
on a target model that is continuously being updated. We
extend speculative decoding into a dynamic, online approach
that allows for real-time adjustments based on the evolving
state of the rollout process. Our method dynamically adapts
the speculative decoding strategy in response to the cur-
rent system load and periodically updates the draft model
to maintain alignment with the target model’s evolving pa-
rameters. We validate that leveraging speculative decoding
with our proposed techniques does not compromise the qual-
ity of the generated samples and effectively mitigates the
aforementioned challenges.

1 Introduction
The adoption of reinforcement learning (RL) represents a piv-
otal advancement in the methodology for optimizing large
language models (LLMs). RL has yielded marked improve-
ments in their capacity for reasoning and has uncovered a
previously unrecognized scaling property applicable at in-
ference time [5, 10]. The effectiveness of this approach is
demonstrated by its integration into frontier LLMs, includ-
ing OpenAI’s o1 [1] and o3 [2], Claude 3.7 Sonnet [4], and
DeepSeek-R1 [5]. These models all leverage RL to establish
state-of-the-art capabilities in complex domains such as code
generation and quantitative reasoning.

RL for LLMs typically involves two key stages: the rollout
stage and the training stage. The RL workflow consists of
iteratively executing these two stages. Specifically, during
the rollout stage, the LLM model auto-regressively generates
multiple samples for each input prompt. These samples are
then evaluated using a reward function, which may be based
on human feedback or rule-based verifiers. The training stage
follows by updating the model parameters according to the
reward signals of the generated samples.

Due to the inherent long-tail distribution of output lengths
during the rollout stage, RL for LLMs experiences significant
resource under-utilization. Towards the end of the rollout
stage, as only a small fraction of long-tail samples remain
active, a twofold resource inefficiency emerges: the GPUs of
replicated workers are left idle, while the GPU of the worker
still generating becomes severely under-utilized. This ineffi-
ciency is further exacerbated by the long chain-of-thought
reasoning process, which is a common practice to enhance
the reasoning capabilities of LLMs [5].
Unfortunately, scaling up the number of GPUs for the

rollout stage does not efficiently translate into faster sample
generation. This is because for the long-tail samples, the
auto-regressive decoding generation process with a very
small batch size falls short in fully utilizing the compute
capabilities of modern GPUs. In each decoding iteration, the
generation of the next token requires to load the intermedi-
ate states (i.e., key-value cache) of all previous tokens and the
model parameters from High-Bandwidth Memory (HBM) to
the GPUs’ shared memory. This memory-bandwidth-bound
operation dominates the computation time of each decoding
iteration. The generation time for the long-tail samples is
thus limited by the aggregated memory bandwidth of the
GPUs. Existing parallelism strategies for LLM inference do
not effectively address this challenge. Tensor parallelism par-
allelizes the computation of a single forward pass across
multiple GPUs but incurs significant communication over-
head on the critical path. Therefore, it is typically applied
within a single GPU node. Data parallelism replicates the
model and dispatches samples to the replicas. However, it
provides the same aggregated memory bandwidth for each
sample, thereby failing to further reduce the generation time
when scaling out resources.
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Figure 1: Overview of SpecRL.

Speculative Decoding (SD) is a natural fit for accelerating
the decoding iteration with a small batch size. It employs
a small “draft” model to generate a tree of candidate future
tokens. These candidates are then validated in a single, par-
allel forward pass by the original, larger “target” model. By
replacing numerous sequential forward passes of the target
model with a single verification step and accessing only the
small draft models’ KV cache and parameters in the decoding
iteration, SD yields significant speedups.
However, directly applying existing speculative decod-

ing methods to RL rollout is suboptimal. These methods are
primarily designed for online LLM inference serving, a sce-
nario that differs from RL rollout in two critical aspects. First,
online inference typically avoids a long-tail distribution of
output lengths because batches can be continually filled with
incoming requests to maintain high throughput. In contrast,
an RL rollout begins with a fixed batch of prompts, and the
number of active samples inevitably diminishes as gener-
ation progresses. Second, the LLM parameters for online
inference are static during serving. The RL rollout process,
however, is inherently dynamic, involving continuous up-
dates to the target model’s parameters. This dynamic nature
introduces a significant challenge for speculative decoding,
as the draft model must closely track the evolving target
model to ensure a high acceptance rate and overall decoding
efficiency.

To address these challenges, we present SpecRL, a system
that employs dynamic and online speculative decoding to
accelerate the rollout stage of RL for LLMs (Figure 1). Based
on a detailed analysis of the performance speedup of spec-
ulative decoding, we optimize RL rollout with speculative
decoding from both the systems and algorithmic levels.

From a systems perspective, we design a dynamic SD con-
figuration strategy that adapts to the generation batch size.
This strategy considers the trade-off between the idle com-
pute capabilities for the draft model and the benefit from
more aggressive speculation. We also apply an online draft

Hyperparameter Value

Batch size 128
Number of samples per prompt 32
Maximum output length 4096
Optimizer AdamW
Learning rate 10−6
Betas (𝛽1, 𝛽2) [0.9, 0.95]
Rollout sampling

top-k -1 (all tokens)
top-p 1.0
temperature 1.0

Training method On-policy

Table 1: Training hyperparameters and configurations.

training approach to continuously align the draft model with
the evolving target model. From an algorithmic perspec-
tive, we validate the use of speculative decoding does not
alter the key properties of RL rollout, including the distri-
butions of output lengths and rewards. We also develop a
novel domain-specific RL algorithm to enhance the speedup
from speculative decoding.

We show some preliminary results of SpecRL on RL train-
ing of Qwen2.5-7B-Instruct [3]. The experimental results
demonstrate that SpecRL reduces the generation time by
1.3-2.5× compared to the original RL rollout process under
different batch sizes. Furthermore, SpecRL achieves better
rollout efficiency than naive speculative decoding by dynam-
ically adjusting the SD configuration, continuously training
the draft model, and employing the domain-specific RL train-
ing algorithm for the draft model.

2 SpecRL Design
2.1 Impact of SD on RL rollout
Prior work has theoretically proved that, through a modi-
fied rejection sampling method, the token distribution of SD
given a context is identical to the distribution produced by
the target model. Due to the sensitivity of RL training to
rollout trajectories, we first carefully examine the distribu-
tions of output lengths and rewards after replacing original
auto-regressive decoding with SD.
We first conduct RL training on Qwen2.5-7B-Instruct us-

ing GRPO [5] and a dataset from Open-Reasoner-Zero [6].
Table 1 lists the detailed experimental settings. Then, we
train a draft model using the EAGLE-2 [8] approach. For
our evaluation, we use checkpoints from the 50th and 450th
steps of a 600-step RL training process. We benchmark four
distinct rollout strategies:
• Origin is the baselinemethod using original auto-regressive
decoding.
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Figure 2: Output lengths of different rollout strategies at the 50th RL training step.
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Figure 3: Output lengths of different rollout strategies at the 450th RL training step.
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Figure 4: The output length CDF at the 450th RL train-
ing step.

• Origin (Repeat) is a second, independent run of the
auto-regressive decoding baseline. RL typically encour-
ages model exploration, which is often implemented by
selecting larger values for top-𝑘 and top-𝑝 during sam-
pling. Consequently, multiple independent and repeated
rollouts may produce non-identical results. We, therefore,
evaluate the effect of these independent rollouts via Origin
(Repeat).

• SD (Tree) is the SD-assisted rollout strategy based on the
EAGLE-2 speculative decoding method. At each step, it
generates a candidate token tree with a depth of 5 and a
width of 8. The 32 highest-scoring tokens from the tree
are then selected for verification.

• SD (Sequential) also employs SD, but it speculatively
generates a linear sequence of 4 future tokens at each step,
all of which are subsequently verified.

Figure 2 and Figure 3 illustrates the output lengths for 128
prompts, each sampled 32 times, using model checkpoints
from the 50th and 450th RL training steps. To facilitate a
clear comparison across the different rollout strategies, the
prompts (represented on the x-axis) are sorted in ascend-
ing order based on the median output length generated by
the baseline "Origin" method. This same prompt ordering is
maintained when presenting the results for the other three
strategies. A key observation is that for any given prompt,
its output lengths tend to occupy a similar rank within
the overall distribution, regardless of which of the four
rollout strategies is used.
Figure 4 further analyzes the output length distribution

from the 450th training step by showing both the overall
CDF and the per-sample output lengths normalized by the
baseline ("Origin") output length. It reveals that the output
length distributions of all four rollout methods are nearly
identical. Furthermore, it demonstrates that the effect of SD
on an individual sample’s output length is consistent
with the natural variance observed when simply per-
forming a second, independent rollout with the target
model.

We employ a similar methodology to assess the impact of
SD on the model’s mathematical problem-solving capabili-
ties. Specifically, we examine the distribution of the average
reward per prompt for the four rollout methods at different
RL training steps. A binary reward scheme is used: a reward
of 1 is assigned if and only if the model’s output contains the
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Figure 5: The distribution of average rewards with different rollout strategies at the 450th RL training step.

Symbol Meaning

𝑇𝑇 (𝑏) Target model decoding time with batch size 𝑏
𝑇𝐷 (𝑏) Draft model decoding time with batch size 𝑏
𝑇𝑉 (𝑏) Target model verification time for 𝑏 tokens
𝐿 Output length
𝑅 Number of Draft-Verify rounds
𝛾 Number of draft decoding steps per round
𝑡 Number of tokens per draft decoding step
𝑘 Number of tokens per verification step

Table 2: Key notations.

correct answer according to the ground truth, and 0 other-
wise. As shown in Figure 5, which sorts the prompts on the
x-axis with the same method as Figure 3, the distribution of
average rewards is highly similar across all methods. This
indicates that the integration of SD does not cause per-
formance regression; we observe no cases where problems
that are solvable using original auto-regressive decoding
become unsolvable.

Therefore, applying speculative decoding in the RL rollout
stage can provide system acceleration without negatively
impacting algorithmic performance. This conclusion holds
provided that signals from the draft model’s inference are
not incorporated into the loss function (in contrast to MTP
used in DeepSeek-V3’s pre-training). However, key differ-
ences between the RL rollout and online inference serving
necessitate the use of dynamic and online SD.

2.2 Dynamic SD Configurations
The first distinction between RL rollout and online serving
is the long-tail output length distribution, which causes the
batch size to decrease over time within each RL step’s roll-
out. This leads to a gradual shift in the process from being
compute-bounded to memory-bandwidth-bounded. Given
that SD primarily accelerates memory-bound decoding by
reducing parameter access, its utility changes throughout
the rollout. In the early, compute-bounded iterations, there
is limited surplus compute capabilities for speculation. Con-
sequently, the application of SD in RL rollout requires its
configuration to be adjusted based on the decoding batch
size.
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Figure 6: Performance degradation of SD as RL training
progresses.
The dynamic SD configuration strategy is based on the

analysis of the speedup from SD with different configura-
tions (which is similar to prior work [7]). Table 2 lists the
key concepts. For a single prompt, the total time for auto-
regressive generation by the target model is𝑇𝐴𝑅 = 𝐿 ×𝑇𝑇 (𝑏).
The time for generation with speculative decoding is 𝑇𝑆𝐷 =

𝑅 × (𝛾 ×𝑇𝐷 (𝑏𝑡) +𝑇𝑉 (𝑏𝑘)), where 𝑘 ≤ 𝛾 × 𝑡 . The speedup is
calculated as

𝑇𝐴𝑅

𝑇𝑆𝐷
=

𝐿 ×𝑇𝑇 (𝑏)
𝑅 × (𝛾 ×𝑇𝐷 (𝑏𝑡) +𝑇𝑉 (𝑏𝑘))

(1)

=
𝐿

𝑅
× 𝑇𝑇 (𝑏)
𝛾 ×𝑇𝐷 (𝑏𝑡) +𝑇𝑉 (𝑏𝑘)

(2)

Note that 𝐿/𝑅 is the accept length of the draft model, which
can be obtained through offline or online metrics. The re-
lationships between 𝑇𝑇 , 𝑇𝐷 , 𝑇𝑉 and the batch size can be
profiled offline as prior work does [11].

2.3 Online Draft Model Training
A second challenge arises from the fact that RL training
continuously updates the target model’s parameters, caus-
ing the token distribution generated by the draft model to
progressively diverge from that of the target model. Fig-
ure 6 illustrates this issue. In the figure, "KL Divergence"
measures the divergence between the current target model
(updated by RL) and the original reference model; a higher
value signifies a greater shift from the initial state. "Accept
Length" measures the efficiency of the draft model’s specu-
lation—specifically, it is the number of tokens in a drafted
sequence that are accepted by the target model in a single
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Figure 7: RL training for draft model.

step. A longer accept length directly corresponds to greater
acceleration from speculative decoding. The figure clearly
reveals a negative correlation between these two metrics,
indicating that as RL training causes the target model’s dis-
tribution to shift, the performance of speculative decoding
degrades.

This necessitates online training of the draft model, which
has been proposed by Online Speculative Decoding [9]. Typ-
ically, to preserve the model’s general capabilities across
various domains, the distributional shift caused by RL train-
ing is kept relatively small. This allows for a straightforward
solution: we can counteract the performance degradation by
periodically tuning the draft model every 𝑁 training steps.

2.4 RL Training for Draft Model
Throughout our research, we observed that the draft model
appears to have an intrinsic performance ceiling. Specifically,
beyond a certain threshold, further expanding the depth and
width of the candidate token tree yields no further increase
in the accept length.

After initially training the draft model with the pre-training
paradigm to the point where its accept length saturates, we
explore the use of RL to further enhance its capabilities. This
approach is predicated on the hypothesis that RL for LLMs is
typically aimed at improving performance on specific tasks
or domains, such as math and coding. Therefore, we assume
that it is also possible to leverage RL to specialize the draft
model for improved performance in a target domain. Figure 7
shows the overview of the RL training process for the draft
model. The details are as follows.
• Dataset.We construct the training set by extracting multi-

ple, distinct prefixes from each full sample (which consists
of a prompt and the target model’s response). These pre-
fixes then serve as the individual prompts for the draft
model’s RL training.

• Rollout. Each rollout consists of generating a 5-token
sequence from a given prompt. Diverging from standard
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Figure 8: Effectiveness of dynamic SD configurations.
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SD inference, which often uses greedy sampling, our draft
model’s rollout utilizes nucleus sampling.

• Reward. Since the acceleration from Speculative Decod-
ing is directly proportional to the accept length, we use
the average accept length per speculation as the outcome
reward. (This is equivalent to treating the acceptance rate
of each individual token as a process reward).

3 Evaluation
In this section, we show the preliminary evaluation results
of SpecRL.
Figure 8 compares the performance of the Origin, SD

(Tree), and SD (Sequential) methods across batch sizes rang-
ing from 1 to 32. In this experiment, the SD (Sequential)
configuration predicts one subsequent token per iteration.
For small batch sizes (e.g., 1 to 8), SD (Tree) provides a greater
speedup than SD (Sequential). However, as the batch size
increases, the performance of SD (Sequential) gradually ap-
proaches and eventually surpasses that of SD (Tree). Notably,
as the batch size increases from 24 to 32, the throughput of SD
(Tree) declines. This is because at larger batch sizes, the com-
plex tree-based approach expends excessive computational
resources on speculation and verification, diminishing its
returns. SpecRL adopts the optimal configuration according
to the batch size.

Figure 9 shows the SD speedup with/without online draft
model training. We train the draft model for one epoch using
the 4096 rollout samples collected at the 450th RL training
step. The updated model demonstrated a significant perfor-
mance improvement in subsequent RL training.
As illustrated in Figure 10, our RL training paradigm for

the draft model yields a substantial increase in the mean
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Figure 10: Performance of RL draft model training.
reward, raising it from approximately 1.6 to 2.4. In this con-
text, the mean reward is defined as the average accept length
under nucleus sampling. When the mean reward is 1.6, the
average accept length is 4.27. Consequently, RL training for
the draft model brings a significant improvement in the ac-
cept length.

4 Conclusion
We present SpecRL, a system that accelerates the long-tail
rollout stage in RL for LLMs. SpecRL introduces a dynamic
SD configuration strategy that adapts to fluctuating batch
sizes, an online training approach to align the draft model
with the evolving target model, and a novel domain-specific
RL algorithm to maximize decoding speedup. Experimental
results demonstrate that SpecRL achieves up to a 2.5× re-
duction in generation time compared to the conventional RL
rollout process.
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