Jolteon: Unleashing the Promise of Serverless for Serverless Workflows

Zili Zhang, Chao Jin, Xin Jin
Serverless computing

- AWS Lambda
- Azure Functions
- Google Cloud Functions
- Knative

Fine-grained resource elasticity
- Auto-scaling
- Concurrency from 1 to 1,000

Fine-grained billing
- 1 MB memory granularity
- 1 ms time granularity
Serverless workflow

AWS Step Function

Azure Logic App

Google Cloud Workflow

Job Execution DAG

Data parallelism

Data dependency

Serverless functions

Deploy

Workflow execution latency

Cost ($ \sum \text{funcs} \times \text{time} \times \text{memory}$)
Resource configuration: a new problem

Fine-grained resource elasticity

Can we decide the resource configuration automatically to satisfy application-level requirements for serverless workflows?

More resources
Faster, higher cost

Less resources
Slower, lower cost

Degree of parallelism

Function size

Resource configuration: a new problem

Fine-grained resource elasticity

Can we decide the resource configuration automatically to satisfy application-level requirements for serverless workflows?

More resources
Faster, higher cost

Less resources
Slower, lower cost

Degree of parallelism

Function size
Performance model

- Resource configuration
- Workflow latency/cost

White-box model (Ditto, SIGCOMM’23)
Capture the characteristics step-by-step

Black-box model (Orion, OSDI’22)
Capture the performance variability
Solve the optimization problem

Latency/cost budget → Resource configuration

Possible configurations → Optimal configuration

Enumerate

500ms/1$

Optimal configuration

500ms/1$
Solve the optimization problem

Stage 1 \rightarrow Stage 2 \rightarrow Stage 3 \rightarrow \cdots \rightarrow Large configuration space

Enumerate

Stage 1 \rightarrow Stage 2 \rightarrow Stage 3 \rightarrow Stage 4 \rightarrow Stage 5

Complex performance model

Enumerate
Jolteon design outline

Challenge 1: How to build the performance model?

- Analytical model → Fast and accurate prediction on average time
- Distribution-aware model → Guarantee performance bound

Challenge 2: How to optimize the optimization problem?

- Formulate the optimization
- Fast solve the problem with optimal result
Performance model: initialization

- Network delay
- Image transmission
- Front door execution
- Load container

\[D + G \]
Performance model: transmission

\[T(d, v) = \frac{S}{d \times \min(v \times W, B)} + O_T. \]
Performance model: computation

\[C(d, v) = \sum_{i=0}^{l} (A_i \times \left(\frac{S}{dv} \right)^i + \ln \frac{S}{dv} \times \left(\sum_{i=0}^{m} B_i \times \left(\frac{S}{dv} \right)^i \right) \]
Performance model: workflow

Stochastic performance model: analytic formulas with random variables

Stage 1 → Stage 2 → Stage 3

\[\text{Time} = \max \{\text{stage 1, stage 2}\} + \text{stage 3} \]
Problem Solver: problem formulation

- Objective: minimize cost
- Guarantee the latency bound ε with confidence level δ

$$\begin{cases}
\text{Minimize } \text{Cost}(d,v) \\
\text{St. } \text{Confidence}(\text{Latency}(d,v) < \varepsilon) \geq \delta
\end{cases}$$
Problem Solver: bound guaranteed sampler

\[\text{Confidence}(\text{Latency}(d, v) < \varepsilon) \geq \delta \]

- \[\text{Latency}(d, v) < \varepsilon \] Sample 1
- \[\text{Latency}(d, v) < \varepsilon \] Sample 2
- \[\text{Latency}(d, v) < \varepsilon \] Sample 3

 ...
Problem Solver: bound guaranteed sampler

(a) sample size = 100

(b) sample size = 10000
Problem Solver: bound guaranteed sampler

• The minimal sample size to guarantee the performance bound with confidence level δ

$$\frac{1}{2 \times (1 - \text{percentile})^2 \log\left(\frac{|D|}{1 - \delta}\right)}$$
Problem Solver: solving algorithm with convexity

- Gradient descent algorithm with convexity
- Probe to calibrate the result
Jolteon system
Evaluation

• Setup on AWS
 • Workflow orchestrator: one AWS c5.12xlarge EC2 server
 • Compute: AWS Lambda function
 • Storage: AWS S3
Evaluation

• Jolteon outperforms Orion by up to $2.3 \times$ on cost and $2.1 \times$ on latency
• Compared to Ditto, Jolteon reduce cost by $1.8 \times$ or latency by $3.3 \times$, with a ≤11% reduction on the other metric.
Evaluation

- Jolteon is able to guarantee the latency bound
Evaluation

• Jolteon is able to guarantee the cost bound
Evaluation

- Accuracy of the performance model
- Optimization problem solving time
- Performance model fit time
- Sensitivity of problem solver
Conclusion

• Serverless workflow orchestrator that provides automatic resource configuration to satisfy application-level requirements

• Jolteon uses stochastic performance model to form an optimization problem, which \textbf{minimize the cost} under a latency bound or \textbf{minimize the latency} under a cost bound.

• Jolteon outperforms Orion by up to $2.3 \times$ on cost and $2.1 \times$ on latency. Compared to Ditto, Jolteon reduce cost by $1.8 \times$ or latency by $3.3 \times$, with a $\leq 11\%$ reduction on the other metric.

Thank you!

\texttt{chaojin@pku.edu.cn}