
Ditto: Efficient Serverless Analytics
with Elastic Parallelism

Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou,
Gang Huang, Xuanzhe Liu, Xin Jin

1

2

Serverless computing

AWS Lambda Google Cloud FunctionsAzure Functions Knative

Fine-grained resource elasticity

• Auto-scaling
• Concurrency from 1 to 1,000

Fine-grained billing

• 1 MB memory granularity
• 1 ms time granularity

3

Serverless analytics

Data parallelism

Data dependency

Job Execution DAG

Deploy

Serverless functions

Job completion time (JCT)

Cost (∑!"#$% time×memroy)

Locus (NSDI’19)
NIMBLE (NSDI’21)

Big data & SQL-like query Databricks SQL Serverless
Azure Synapse Analytics

Google BigQuery

4

Higher DoP
Faster, lower JCT

Lower DoP
Lower cost

Fine-grained resource elasticity

EnableCan existing parallelism configuration solutions optimize the
performance goals in serverless settings?

Degree of Parallelism: a new problem

5

Optimal JCT

Time

of

 F
un

ct
io

ns

20

10

15

10

5

0 20 30

Stage 1

Stage 2

Stage 3

Time

of

 F
un

ct
io

ns

20

10

15

10

5

0 20 30

Stage 1

Stage 2
Stage 3

DoP proportional to input data size

NIMBLE: a data perspective

Stage 1
(map)

Stage 2
(map)

Stage 3
(join)

6

Elastic parallelism

Job completion time (JCT)

Cost (∑!"#$% time×memroy)

Data?

Time?

Main idea:
• Match the resource elasticity of serverless computing with parallelism

scheduling in data analytics
• Optimize serverless performance goals directly from a perspective of time

data

tim
e

？

7

Challenge 1:
Optimal parallelism for arbitrary DAGs
• Accurate prediction of the

execution time under dynamic
parallelism configurations

• Consider data dependencies

Map Map

Join Filter

Join

multiple
upstream stages

cascade to
downstream stages

8

Challenge 2:
Coupling of parallelism and placement

High DoP with heavy
data shuffle time

Low DoP with almost
zero data shuffle time

M

M

M R

R

M
1
2

31

3 M

M

M

Server 0

4

6

52

4
5 6

Map Task Reduce Task Shared Memory Remote Storage

R

M 1

M 2
1
2

M 3

3

Server 1 Server 0

SPRIGHT (SIGCOMM’22)
Pheromone (NSDI’23)

Shared memory

• Co-optimize parallelism configuration and function placement

9

Ditto design outline

Challenge 1: How to find the optimal parallelism for arbitrary DAGs?

Challenge 2: How to optimize the coupled parallelism and placement?

• Execution time model → Time under dynamic parallelism
• DoP ratio computing→ Optimal parallelism configuration

• Greedy grouping → Eliminate high data shuffling overhead
• Joint iterative optimization → Co-scheduling

10

Execution time model: a time perspective

• Long running: 10 to 1000 seconds

• Data I/O dominates

0 25 50 75 100 125 150
Time (s)

1
2
3
4
5
6
7
8
9

S
ta
ge

In
de

x

setup
read
compute
write

Time breakdown for TPC-DS Q95

Data w/ size 𝐷

𝐷
𝑑

𝐷
𝑑

𝐷
𝑑

…

Data parallelism

𝑇&'&(~𝑇)*~
𝐷/𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑑 tasks

11

𝑇 𝑠 =
𝛼
𝑑
+ β

Execution time of
stage 𝑠

Parallelized time
Inherent time

𝑑: degree of parallelism, DoP
𝛼: the parallelized time parameter

𝑑 = 2

𝑇 = 5 𝑇 = 3

𝑑 = 4

𝛼 = 8, 𝛽 = 1
Parallelized time unit

Inherent time unit

Execution time model: a time perspective

12

DoP ratio computing

Stage 𝑠+

Stage 𝑠,

Parallelized time unit Inherent time unit

𝑇 = 8

𝛼+ = 8

𝛼, = 2

𝛼+: 𝛼, = 4 𝑑+: 𝑑, = 2Optimal

Intra-path DoP ratio: minimize the sum of the two stages’ execution time

𝑑+: 𝑑, = 𝛼+: 𝛼,

13

DoP ratio computing

Stage 𝑠+ Stage 𝑠,

Downstream
Stage 𝛼+ = 8

𝛼, = 2
𝑇 = 3

𝛼+: 𝛼, = 4 𝑑+: 𝑑, = 4Optimal

Parallelized time unit Inherent time unit

Inter-path DoP ratio: balance the two stages’ time

𝑑+: 𝑑, = 𝛼+: 𝛼,

14

DoP ratio computing

Stage 𝑠+ Stage 𝑠,

Depth

Stage 𝑠-0

1 Stage 𝑠.

Stage 𝑠-
Merge(𝑠+, 𝑠,)
Get 𝑑+: 𝑑, Stage 𝑠/

𝑑. = 𝑑+ + 𝑑,
❶ ❷

Get 𝑑-, 𝑑.

𝑑/ = 𝑁

Get 𝑑+, 𝑑, ❸❹

𝑑0 : degree of parallelism of stage 𝑠0 𝑁 : total number of functions

Merge(𝑠., 𝑠-)
Get 𝑑.: 𝑑-

𝑑/ = 𝑑- + 𝑑.

Stage merging: a new stage also conforms to the execution time model

15

Greedy grouping

• Stage group: stages that should communicate via shared memory
• NP-hard

• Greedy order: group stages with high shuffling overhead
• For JCT optimization, the highest on the critical path first

𝜏 Stage w/ compute time 𝜏

Data dependency w/
shuffling time 𝜔

𝜔
𝜔(𝑒!)=120

𝜔 𝑒" =50

𝜔(𝑒#)=100

𝜔 𝑒$ =80

20

20

10

20

20

𝑃𝑎𝑡ℎ! 𝑃𝑎𝑡ℎ"

Stage group

16

• 𝜶 will decrease as the I/O time reduces to zero after grouping
• Model the I/O and compute parts of 𝜶 separately
• Combine with DoP ratio computing into joint optimization

Read Compute Write

Joint iterative optimization

Grouping

β
α
𝑑

Read Compute

β
α3

𝑑

Stage 𝑠+ Stage 𝑠, Stage 𝑠+ Stage 𝑠,

17

Joint iterative optimization

• Each stage is a group initially

DoP ratio computing

No more stages can be grouped

Greedy grouping two stages

• In each iteration
• group two stages (or stage groups) with the highest shuffling overhead

DoP ratio computing

• recalculate the new optimal parallelism configuration

18

Cost optimization

• DoP ratio computing applies serverless cost model
• Function cost: consider the resource usage
• Total cost: the sum of all function costs

• Greedy grouping groups stages with highest shuffling cost first

• Please refer to our paper for more details!

19

Ditto System

Job (DAG)

ExecTime
Predictor

Elastic Parallelism Sched.

Function Servers

Job Profiles
External Storage

Data

Runtime Monitor

…Func. Func.

Shared Memory
Data

Resource
Manager

Control Plane

User:
JCT/cost Greedy

Grouping
DoP Ratio
Computing

Placement Check

Implement Ditto on top of SPRIGHT (SIGCOMM’ 22)

20

Evaluation

• Setup on AWS
• Scheduling: one m6i.4xlarge server
• Compute: eight m6i.24xlarge servers (96 vCPUs & 384 GB DRAM each)
• Storage: S3

• TPC-DS
• Q1, Q16, Q94, Q95
• groupby, filter, join

• 1 TB data

21

Evaluation

Q1 Q16 Q94 Q950
200
400
600
800

1000

JC
T
(s
)

100% 75% 50% 25%0
200
400
600
800

1000

Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.990
200
400
600
800

1000
Ditto NIMBLE

Four queries Different resource usage Different resource distributions

• Ditto reduces the JCT by 1.3-2.5X compared to NIMBLE

22

Evaluation

Four queries Different resource usage Different resource distributions
Q1 Q16 Q94 Q950.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

C
os
t

100% 75% 50% 25%0.0

0.5

1.0

1.5

2.0

Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.990.0

0.5

1.0

1.5

2.0
Ditto NIMBLE

• Ditto reduces the cost by 1.2-1.7X compared to NIMBLE

23

Evaluation
• Ablation experiment to verify the effectiveness of Ditto

Q1 Q16 Q94 Q950

200

400

600

800

1000

JC
T
(s
)

Q1 Q16 Q94 Q950.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

C
os
t

NIMBLE NIMBLE+Group NIMBLE+DoP Ditto

24

Evaluation

• Performance under Redis

• Accuracy of the execution time model

• Execution breakdown for TPC-DS Query 95

• System overhead of Ditto

25

Conclusion
• Serverless analytics introduces the elastic parallelism scheduling problem

to optimize serverless performance goals, i.e., JCT and cost

• Ditto co-optimizes parallelism configuration and function placement from
the perspective of time
• Execution time model under dynamic parallelism
• DoP ratio computing to achieve optimal JCT or cost
• Joint iterative optimization for both parallelism and placement

• Ditto reduces up to 2.5X in JCT and up to 1.7X on cost compared to NIMBLE

Thank you! chaojin@pku.edu.cn

