

Ditto: Efficient Serverless Analytics with Elastic Parallelism

Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xuanzhe Liu, Xin Jin

Serverless computing

Fine-grained resource elasticity

- Auto-scaling
- Concurrency from 1 to 1,000

Fine-grained billing

- 1 MB memory granularity
- 1 ms time granularity

Serverless analytics

Data parallelism

Degree of Parallelism: a new problem

Fine-grained resource elasticity

Can existing parallelism configuration solutions optimize the performance goals in serverless settings?

Higher DoP Faster, lower JCT

Lower DoP Lower cost

NIMBLE: a data perspective

Elastic parallelism

Main idea:

- Match the <u>resource elasticity</u> of serverless computing with <u>parallelism</u> <u>scheduling</u> in data analytics
- Optimize serverless performance goals directly from a perspective of time

Challenge 1: Optimal parallelism for arbitrary DAGs

 Accurate prediction of the execution time under dynamic parallelism configurations

• Consider data dependencies

Challenge 2: Coupling of parallelism and placement

• Co-optimize parallelism configuration and function placement

High DoP with heavy data shuffle time

Low DoP with almost zero data shuffle time

Ditto design outline

Challenge 1: How to find the optimal parallelism for arbitrary DAGs?

- Execution time model \rightarrow Time under dynamic parallelism
- DoP ratio computing → Optimal parallelism configuration

Challenge 2: How to optimize the coupled parallelism and placement?

- Greedy grouping → Eliminate high data shuffling overhead
- Joint iterative optimization \rightarrow Co-scheduling

Execution time model: a time perspective

- Long running: 10 to 1000 seconds
- Data I/O dominates

Execution time model: a time perspective

d: degree of parallelism, DoP α : the parallelized time parameter

d = 4 11

d = 2

DoP ratio computing

Intra-path DoP ratio: minimize the sum of the two stages' execution time

DoP ratio computing

Inter-path DoP ratio: balance the two stages' time

DoP ratio computing

Stage merging: a new stage also conforms to the execution time model

 d_i : degree of parallelism of stage s_i

N: total number of functions

Greedy grouping

- Stage group: stages that should communicate via shared memory
 - NP-hard
- Greedy order: group stages with high shuffling overhead
 - For JCT optimization, the highest on the critical path first

Stage w/ compute time au

 $\downarrow \omega$ Data dependency w/ shuffling time ω

Stage group

Joint iterative optimization

- α will decrease as the I/O time reduces to zero after grouping
 - Model the I/O and compute parts of α separately
 - Combine with DoP ratio computing into joint optimization

Joint iterative optimization

- Each stage is a group initially
- In each iteration
 - group two stages (or stage groups) with the highest shuffling overhead
 - recalculate the new optimal parallelism configuration

Cost optimization

- DoP ratio computing applies serverless cost model
 - Function cost: consider the resource usage
 - Total cost: the sum of all function costs
- Greedy grouping groups stages with highest shuffling cost first

• Please refer to our paper for more details!

Ditto System

Implement Ditto on top of SPRIGHT (SIGCOMM' 22)

- Setup on AWS
 - Scheduling: one m6i.4xlarge server
 - Compute: eight m6i.24xlarge servers (96 vCPUs & 384 GB DRAM each)
 - Storage: S3
- TPC-DS
 - Q1, Q16, Q94, Q95
 - groupby, filter, join
 - 1 TB data

select

```
count(distinct ws_order_number) as "order count",
  sum(ws_ext_ship_cost) as "total shipping cost",
  sum(ws_net_profit) as "total net profit"
from
 web_sales ws1,
 date_dim,
  customer_address,
 web_site
where
  d_date between '1999-4-01'
  and (cast('1999-4-01' as date) + 60 days)
  and ws1.ws_ship_date_sk = d_date_sk
  and ws1.ws_ship_addr_sk = ca_address_sk
  and ca state = 'IA'
  and ws1.ws_web_site_sk = web_site_sk
  and web company name = 'pri'
```

20

• Ditto reduces the JCT by 1.3-2.5X compared to NIMBLE

• Ditto reduces the cost by 1.2-1.7X compared to NIMBLE

• Ablation experiment to verify the effectiveness of Ditto

- Performance under Redis
- Accuracy of the execution time model
- Execution breakdown for TPC-DS Query 95
- System overhead of Ditto

Conclusion

- Serverless analytics introduces the elastic parallelism scheduling problem to optimize serverless performance goals, i.e., JCT and cost
- Ditto co-optimizes parallelism configuration and function placement from the perspective of time
 - <u>Execution time model</u> under dynamic parallelism
 - <u>DoP ratio computing</u> to achieve optimal JCT or cost
 - Joint iterative optimization for both parallelism and placement
- Ditto reduces up to 2.5X in JCT and up to 1.7X on cost compared to NIMBLE

Thank you! <u>Chaojin@pku.edu.cn</u>