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Serverless computing

AWS Lambda Google Cloud FunctionsAzure Functions Knative

Fine-grained resource elasticity

• Auto-scaling
• Concurrency from 1 to 1,000 

Fine-grained billing

• 1 MB memory granularity
• 1 ms time granularity
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Serverless analytics

Data parallelism

Data dependency

Job Execution DAG

Deploy

Serverless functions

Job completion time (JCT)

Cost (∑!"#$% time×memroy)

Locus (NSDI’19)
NIMBLE (NSDI’21)

Big data & SQL-like query Databricks SQL Serverless
Azure Synapse Analytics

Google BigQuery
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Higher DoP
Faster, lower JCT

Lower DoP
Lower cost 

Fine-grained resource elasticity

EnableCan existing parallelism configuration solutions optimize the 
performance goals in serverless settings?

Degree of Parallelism: a new problem
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Optimal JCT
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DoP proportional to input data size

NIMBLE: a data perspective
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(map)
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(map)
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(join)
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Elastic parallelism

Job completion time (JCT)

Cost (∑!"#$% time×memroy)

Data?

Time?

Main idea:
• Match the resource elasticity of serverless computing with parallelism

scheduling in data analytics
• Optimize serverless performance goals directly from a perspective of time

data

tim
e
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Challenge 1: 
Optimal parallelism for arbitrary DAGs
• Accurate prediction of the 

execution time under dynamic 
parallelism configurations

• Consider data dependencies

Map Map

Join Filter

Join

multiple 
upstream stages

cascade to 
downstream stages
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Challenge 2: 
Coupling of parallelism and placement

High DoP with heavy 
data shuffle time

Low DoP with almost 
zero data shuffle time
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SPRIGHT (SIGCOMM’22)
Pheromone (NSDI’23)

Shared memory

• Co-optimize parallelism configuration and function placement
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Ditto design outline

Challenge 1: How to find the optimal parallelism for arbitrary DAGs?

Challenge 2: How to optimize the coupled parallelism and placement?

• Execution time model → Time under dynamic parallelism
• DoP ratio computing→ Optimal parallelism configuration

• Greedy grouping → Eliminate high data shuffling overhead
• Joint iterative optimization → Co-scheduling
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Execution time model: a time perspective

• Long running: 10 to 1000 seconds

• Data I/O dominates
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Time breakdown for TPC-DS Q95
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𝑇 𝑠 =
𝛼
𝑑
+ β

Execution time of 
stage 𝑠

Parallelized time
Inherent time

𝑑: degree of parallelism, DoP
𝛼: the parallelized time parameter

𝑑 = 2

𝑇 = 5 𝑇 = 3

𝑑 = 4

𝛼 = 8, 𝛽 = 1
Parallelized time unit

Inherent time unit

Execution time model: a time perspective
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DoP ratio computing

Stage 𝑠+

Stage 𝑠,

Parallelized time unit Inherent time unit

𝑇 = 8

𝛼+ = 8

𝛼, = 2

𝛼+: 𝛼, = 4 𝑑+: 𝑑, = 2Optimal

Intra-path DoP ratio: minimize the sum of the two stages’ execution time

𝑑+: 𝑑, = 𝛼+: 𝛼,
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DoP ratio computing

Stage 𝑠+ Stage 𝑠,

Downstream 
Stage 𝛼+ = 8

𝛼, = 2
𝑇 = 3

𝛼+: 𝛼, = 4 𝑑+: 𝑑, = 4Optimal

Parallelized time unit Inherent time unit

Inter-path DoP ratio: balance the two stages’ time 

𝑑+: 𝑑, = 𝛼+: 𝛼,
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DoP ratio computing

Stage 𝑠+ Stage 𝑠,

Depth

Stage 𝑠-0

1 Stage 𝑠.

Stage 𝑠-
Merge(𝑠+, 𝑠,)
Get 𝑑+: 𝑑, Stage 𝑠/

𝑑. = 𝑑+ + 𝑑,
❶ ❷

Get 𝑑-, 𝑑.

𝑑/ = 𝑁

Get 𝑑+, 𝑑, ❸❹

𝑑0 : degree of parallelism of stage 𝑠0 𝑁 : total number of functions

Merge(𝑠., 𝑠-)
Get 𝑑.: 𝑑-

𝑑/ = 𝑑- + 𝑑.

Stage merging: a new stage also conforms to the execution time model
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Greedy grouping

• Stage group: stages that should communicate via shared memory
• NP-hard

• Greedy order: group stages with high shuffling overhead 
• For JCT optimization, the highest on the critical path first

𝜏 Stage w/ compute time 𝜏

Data dependency w/ 
shuffling time 𝜔
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• 𝜶 will decrease as the I/O time reduces to zero after grouping
• Model the I/O and compute parts of 𝜶 separately
• Combine with DoP ratio computing into joint optimization

Read Compute Write

Joint iterative optimization

Grouping

β
α
𝑑

Read Compute

β
α3

𝑑

Stage 𝑠+ Stage 𝑠, Stage 𝑠+ Stage 𝑠,
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Joint iterative optimization

• Each stage is a group initially

DoP ratio computing

No more stages can be grouped

Greedy grouping two stages

• In each iteration 
• group two stages (or stage groups) with the highest shuffling overhead

DoP ratio computing

• recalculate the new optimal parallelism configuration
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Cost optimization

• DoP ratio computing applies serverless cost model
• Function cost: consider the resource usage
• Total cost: the sum of all function costs

• Greedy grouping groups stages with highest shuffling cost first

• Please refer to our paper for more details!
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Ditto System

Job (DAG)

ExecTime
Predictor

Elastic Parallelism Sched.

Function Servers

Job Profiles
External Storage

Data

Runtime Monitor

…Func. Func.

Shared Memory
Data

Resource 
Manager

Control Plane

User:
JCT/cost Greedy 

Grouping 
DoP Ratio 
Computing 

Placement Check

Implement Ditto on top of SPRIGHT (SIGCOMM’ 22)
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Evaluation

• Setup on AWS
• Scheduling: one m6i.4xlarge server
• Compute: eight m6i.24xlarge servers (96 vCPUs & 384 GB DRAM each)
• Storage: S3

• TPC-DS
• Q1, Q16, Q94, Q95
• groupby, filter, join

• 1 TB data
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Evaluation
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Four queries Different resource usage Different resource distributions

• Ditto reduces the JCT by 1.3-2.5X compared to NIMBLE
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Evaluation

Four queries Different resource usage Different resource distributions
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• Ditto reduces the cost by 1.2-1.7X compared to NIMBLE
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Evaluation
• Ablation experiment to verify the effectiveness of Ditto
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Evaluation

• Performance under Redis

• Accuracy of the execution time model

• Execution breakdown for TPC-DS Query 95

• System overhead of Ditto
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Conclusion
• Serverless analytics introduces the elastic parallelism scheduling problem 

to optimize serverless performance goals, i.e., JCT and cost

• Ditto co-optimizes parallelism configuration and function placement from 
the perspective of time
• Execution time model under dynamic parallelism
• DoP ratio computing to achieve optimal JCT or cost
• Joint iterative optimization for both parallelism and placement

• Ditto reduces up to 2.5X in JCT and up to 1.7X on cost compared to NIMBLE

Thank you! chaojin@pku.edu.cn


